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HENRY LAURENCE GANTT
(1861-1919)

Henry Laurence Gantt was an industrial engineer and a disciple of
Frederick W. Taylor. He developed his now famous charts during World
War I to evaluate production schedules. Gantt discussed the underlying
principles in his paper “Efficiency and Democracy,” which he presented
at the annual meeting of the American Society of Mechanical Engineers
in 1918. The Gantt charts currently in use are typically a simplification of
the originals, both in purpose and in design.



Preface

Preface to the First Edition

Sequencing and scheduling is a form of decision-making that plays a crucial role
in manufacturing and service industries. In the current competitive environment
effective sequencing and scheduling has become a necessity for survival in the
market-place. Companies have to meet shipping dates that have been committed
to customers, as failure to do so may result in a significant loss of goodwill. They
also have to schedule activities in such a way as to use the resources available
in an efficient manner.

Scheduling began to be taken seriously in manufacturing at the beginning
of this century with the work of Henry Gantt and other pioneers. However, it
took many years for the first scheduling publications to appear in the industrial
engineering and operations research literature. Some of the first publications ap-
peared in Naval Research Logistics Quarterly in the early fifties and contained
results by W.E. Smith, S.M. Johnson and J.R. Jackson. During the sixties a
significant amount of work was done on dynamic programming and integer pro-
gramming formulations of scheduling problems. After Richard Karp’s famous
paper on complexity theory, the research in the seventies focused mainly on the
complexity hierarchy of scheduling problems. In the eighties several different
directions were pursued in academia and industry with an increasing amount
of attention paid to stochastic scheduling problems. Also, as personal comput-
ers started to permeate manufacturing facilities, scheduling systems were being
developed for the generation of usable schedules in practice. This system design
and development was, and is, being done by computer scientists, operations
researchers and industrial engineers.

This book is the result of the development of courses in scheduling theory and
applications at Columbia University. The book deals primarily with machine
scheduling models. The first part covers deterministic models and the second
part stochastic models. The third and final part deals with applications. In this
last part scheduling problems in practice are discussed and the relevance of
the theory to the real world is examined. From this examination it becomes

vii



viii Preface

clear that the advances in scheduling theory have had only a limited impact
on scheduling problems in practice. Hopefully there will be in a couple of years
a second edition in which the applications part will be expanded, showing a
stronger connection with the more theoretical parts of the text.

This book has benefited from careful reading by numerous people. Reha Uz-
soy and Alan Scheller Wolf went through the manuscript with a fine tooth comb.
Len Adler, Sid Browne, Xiuli Chao, Paul Glasserman, Chung-Yee Lee, Young-
Hoon Lee, Joseph Leung, Elizabeth Leventhal, Rajesh Sah, Paul Shapiro, Jim
Thompson, Barry Wolf, and the hundreds of students who had to take the (re-
quired) scheduling courses at Columbia provided many helpful comments which
improved the manuscript.

The author is grateful to the National Science Foundation for its continued
summer support, which made it possible to complete this project.

Michael Pinedo
New York, 1994.

Preface to the Second Edition

The book has been extended in a meaningful way. Five chapters have been
added. In the deterministic part it is the treatment of the single machine, the
job shop and the open shop that have been expanded considerably. In the
stochastic part a completely new chapter focuses on single machine scheduling
with release dates. This chapter has been included because of multiple requests
from instructors who wanted to see a connection between stochastic scheduling
and priority queues. This chapter establishes such a link. The applications part,
Part III, has been expanded the most. Instead of a single chapter on general
purpose procedures, there are now two chapters. The second chapter covers
various techniques that are relatively new and that have started to receive a fair
amount of attention over the last couple of years. There is also an additional
chapter on the design and development of scheduling systems. This chapter
focuses on rescheduling, learning mechanisms, and so on. The chapter with the
examples of systems implementations is completely new. All systems described
are of recent vintage. The last chapter contains a discussion on research topics
that could become of interest in the next couple of years.
The book has a website:

http://www.stern.nyu.edu/ mpinedo

The intention is to keep the site as up-to-date as possible, including links to
other sites that are potentially useful to instructors as well as students.

Many instructors who have used the book over the last couple of years have
sent very useful comments and suggestions. Almost all of these comments have
led to improvements in the manuscript.

Reha Uzsoy, as usual, went with a fine tooth comb through the manuscript.
Salah Elmaghraby, John Fowler, Celia Glass, Chung-Yee Lee, Sigrid Knust,


http://www.stern.nyu.edu/~mpinedo

Preface ix

Joseph Leung, Chris Potts, Levent Tuncel, Amy Ward, and Guochuan Zhang
all made comments that led to substantial improvements.

A number of students, including Gabriel Adei, Yo Huh, Maher Lahmar, Sonia
Leach, Michele Pfund, Edgar Possani, and Aysegul Toptal, have pointed out
various errors in the original manuscript.

Without the help of a number of people from industry, it would not have
been possible to produce a meaningful chapter on industrial implementations.
Thanks are due to Heinrich Braun and Stephan Kreipl of SAP, Rama Akkiraju
of IBM, Margie Bell of i2, Emanuela Rusconi and Fabio Tiozzo of Cybertec,
and Paul Bender of SynQuest.

Michael Pinedo
New York, 2001.

Preface to the Third Edition

The basic structure of the book has not been changed in this new edition.
The book still consists of three parts and a string of Appendixes. However,
several chapters have been extended in a meaningful way, covering additional
topics that have become recently of interest. Some of the new topics are more
methodological, whereas others represent new classes of models.

The more methodological aspects that are receiving more attention include
Polynomial Time Approximation Schemes (PTAS) and Constraint Program-
ming. These extensions involve new material in the regular chapters as well as
in the Appendixes. Since the field of online scheduling has received an enormous
amount of attention in recent years, a section focusing on online scheduling has
been added to the chapter on parallel machine scheduling.

Two new classes of models are introduced in the chapter on more advanced
single machine scheduling, namely single machine scheduling with batch pro-
cessing and single machine scheduling with job families.

Of course, as in any new edition, the chapter that describes implementations
and applications had to be revamped and made up-to-date. That has happened
here as well. Two new software systems have been introduced, namely a system
that is currently being implemented at AMD (Advanced Micro Devices) and a
generic system developed by Taylor Software.

For the first time, a CD-ROM has been included with the book. The CD-
ROM contains various sets of power point slides, minicases provided by com-
panies, the LEKIN Scheduling system, and two movies. The power point slides
were developed by Julius Atlason (when he taught a scheduling course at the
University of Michigan-Ann Arbor), Johann Hurink (from the University of
Twente in Holland), Rakesh Nagi (from the State University of New York at
Buffalo), Uwe Schwiegelshohn (from the University of Dortmund in Germany),
Natalia Shakhlevich (from the University of Leeds in England).



X Preface

A website will be maintained for this book at
http://www.stern.nyu.edu/ mpinedo

The intention is to keep this website as up-to-date as possible, including links
to other sites that are potentially useful to instructors as well as to students.

A hardcopy of a solutions manual is available from the author for instructors
who adopt the book. The solutions provided in this manual have been prepared
by Clifford Stein (Columbia University), Julius Atlason (Michigan), Jim Geelen
(Waterloo), Natalia Shakhlevich (Leeds), Levent Tuncel (Waterloo), and Martin
Savelsbergh (Georgia Tech).

I am very grateful to a number of colleagues and students in academia who
have gone over the new sections and have provided some very useful comments,
namely Alessandro Agnetis (Siena), Ionut Aron (T.J. Watson Research Labo-
ratories, IBM), Dirk Briskhorn (Kiel), John Fowler (Arizona), Jim Geelen (Wa-
terloo), Johann Hurink (TU Twente, the Netherlands), Detlef Pabst (AMD),
Gianluca de Pascale (Siena, Italy), Jacob Jan Paulus (TU Twente, the Nether-
lands), Jiri Sgall (Charles University, Prague), and Gerhard Woeginger (TU
Eindhoven). Gerhard provided me with the chapters he wrote on Polynomial
Time Approximation Schemes. His material has been incredibly useful.

Without the help of a number of people from industry, it would not have
been possible to produce a meaningful chapter on industrial implementations.
Thanks are due to Stephan Kreipl of SAP, Shekar Krishnaswamy and Peng Qu
of AMD, and Robert MacDonald of Taylor Software.

The technical production of the book would not have been possible without
the invalualable help from Adam Lewenberg (Stanford University) and Achi
Dosanjh (Springer). Without the continued support of the National Science
Foundation this book would never have been written.

Michael Pinedo
Spring 2008
New York

Preface to the Fourth Edition

The text has undergone a number of enhancements and corrections. The presen-
tations and proofs of various results in Chapters 4 and 5 have been changed and
simplified. Chapter 6 now contains a new section that focuses on proportionate
flow shops. Chapter 19 contains a significant amount of new material as well;
two new sections have been added that describe the Asprova APS and the Pre-
actor scheduling systems. The other chapters have undergone minor changes;
however, a significant number of new references have been added in order to
keep the book up-to-date.
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Preface xi

A website for this book is still being maintained on the author’s homepage
http://www.stern.nyu.edu/ mpinedo

The intention is to keep this website as up-to-date as possible, including links
to other sites that are potentially useful to instructors as well as to students.

The third edition of this book contained a CD-ROM. The material on the
CD-ROM has been expanded significantly; but, in this new edition, this ma-
terial is not included as a CD-ROM. This supplementary electronic material
is available for download from the author’s homepage as well as from the
Springer site

http://extras.springer.com

This supplementary electronic material will also be included in the ebook ver-
sion of this text.

A hardcopy of a solutions manual is still available from the author for in-
structors who adopt the book. The solutions provided in the manual have been
prepared by Clifford Stein (Columbia University), Julius Atlason (Michigan),
Jim Geelen (Waterloo), Natalia Shakhlevich (Leeds), Levent Tuncel (Waterloo),
and Martin Savelsbergh (Georgia Tech).

I am very grateful to a number of colleagues and students in academia who
have gone over the new sections and have provided some very useful comments,
namely Stefan Bock (Wuppertal), Banafsheh Khosravi (Southampton), Scott
Mason (Clemson University), Martin Picha, Kirk Pruhs (Pittsburgh), Christian
Rathjen (Wuppertal), Uwe Schwiegelshohn (University Dortmund), Jiri Sgall
(Charles University, Prague), Andrew Wirth (University of Melbourne), and
Lirong Xia (Duke University).

Without the help from various individuals in industry, it would not have been
possible to produce a meaningful chapter on industrial implementations. With
respect to these changes, thanks are due to Oh Ki from Asprova and Gregory
Quinn from Preactor.

The technical production of the book would, again, not have been possible
without the invaluable help from Adam Lewenberg (Stanford University), Achi
Dosanjh (Springer), and Danielle Benzaken (NYU). The continued support of
the National Science Foundation is still very much being appreciated.

Michael Pinedo
Fall 2011
New York
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Chapter 1

Introduction
1.1 The Role of Scheduling ............ ... ... . .. 1
1.2  The Scheduling Function in an Enterprise .......... 4
1.3 Outlineofthe Book ........... ..o i, 6

1.1 The Role of Scheduling

Scheduling is a decision-making process that is used on a regular basis in many
manufacturing and services industries. It deals with the allocation of resources
to tasks over given time periods and its goal is to optimize one or more objec-
tives.

The resources and tasks in an organization can take many different forms.
The resources may be machines in a workshop, runways at an airport, crews at a
construction site, processing units in a computing environment, and so on. The
tasks may be operations in a production process, take-offs and landings at an
airport, stages in a construction project, executions of computer programs, and
so on. Each task may have a certain priority level, an earliest possible starting
time and a due date. The objectives can also take many different forms. One
objective may be the minimization of the completion time of the last task and
another may be the minimization of the number of tasks completed after their
respective due dates.

Scheduling, as a decision-making process, plays an important role in most
manufacturing and production systems as well as in most information processing
environments. It is also important in transportation and distribution settings
and in other types of service industries. The following examples illustrate the
role of scheduling in a number of real world environments.

Example 1.1.1 (A Paper Bag Factory)

Consider a factory that produces paper bags for cement, charcoal, dog food,
and so on. The basic raw material for such an operation are rolls of paper.
The production process consists of three stages: the printing of the logo, the
gluing of the side of the bag, and the sewing of one end or both ends of the

M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 1
DOI 10.1007/978-1-4614-2361-4 1, © Springer Science+Business Media, LLC 2012



1 Introduction

bag. Each stage consists of a number of machines which are not necessarily
identical. The machines at a stage may differ slightly in the speed at which
they operate, the number of colors they can print or the size of bag they can
produce. Each production order indicates a given quantity of a specific bag
that has to be produced and shipped by a committed shipping date or due
date. The processing times for the different operations are proportional to
the size of the order, i.e., the number of bags ordered.

A late delivery implies a penalty in the form of loss of goodwill and the
magnitude of the penalty depends on the importance of the order or the client
and the tardiness of the delivery. One of the objectives of the scheduling
system is to minimize the sum of these penalties.

When a machine is switched over from one type of bag to another a
setup is required. The length of the setup time on the machine depends on
the similarities between the two consecutive orders (the number of colors in
common, the differences in bag size and so on). An important objective of the
scheduling system is the minimization of the total time spent on setups. ||

Example 1.1.2 (A Semiconductor Manufacturing Facility)

Semiconductors are manufactured in highly specialized facilities. This is the
case with memory chips as well as with microprocessors. The production
process in these facilities usually consists of four phases: wafer fabrication,
wafer probe, assembly or packaging, and final testing.

Wafer fabrication is technologically the most complex phase. Layers of
metal and wafer material are built up in patterns on wafers of silicon or
gallium arsenide to produce the circuitry. Each layer requires a number of
operations, which typically include: (i) cleaning, (ii) oxidation, deposition
and metallization, (iii) lithography, (iv) etching, (v) ion implantation, (vi)
photoresist stripping, and (vii) inspection and measurement. Because it con-
sists of various layers, each wafer has to undergo these operations several
times. Thus, there is a significant amount of recirculation in the process.
Wafers move through the facility in lots of 24. Some machines may require
setups to prepare them for incoming jobs; the setup time often depends on
the configurations of the lot just completed and the lot about to start.

The number of orders in the production process is often in the hundreds
and each has its own release date and a committed shipping or due date.
The scheduler’s objective is to meet as many of the committed shipping
dates as possible, while maximizing throughput. The latter goal is achieved
by maximizing equipment utilization, especially of the bottleneck machines,
requiring thus a minimization of idle times and setup times. I

Example 1.1.3 (Gate Assignments at an Airport)

Consider an airline terminal at a major airport. There are dozens of gates
and hundreds of planes arriving and departing each day. The gates are not
all identical and neither are the planes. Some of the gates are in locations
with a lot of space where large planes (widebodies) can be accommodated
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easily. Other gates are in locations where it is difficult to bring in the planes;
certain planes may actually have to be towed to their gates.

Planes arrive and depart according to a certain schedule. However, the
schedule is subject to a certain amount of randomness, which may be weather
related or caused by unforeseen events at other airports. During the time
that a plane occupies a gate the arriving passengers have to be deplaned, the
plane has to be serviced and the departing passengers have to be boarded.
The scheduled departure time can be viewed as a due date and the airline’s
performance is measured accordingly. However, if it is known in advance that
the plane cannot land at the next airport because of anticipated congestion
at its scheduled arrival time, then the plane does not take off (such a policy
is followed to conserve fuel). If a plane is not allowed to take off, operating
policies usually prescribe that passengers remain in the terminal rather than
on the plane. If boarding is postponed, a plane may remain at a gate for an
extended period of time, thus preventing other planes from using that gate.

The scheduler has to assign planes to gates in such a way that the as-
signment is physically feasible while optimizing a number of objectives. This
implies that the scheduler has to assign planes to suitable gates that are avail-
able at the respective arrival times. The objectives include minimization of
work for airline personnel and minimization of airplane delays.

In this scenario the gates are the resources and the handling and servicing
of the planes are the tasks. The arrival of a plane at a gate represents the
starting time of a task and the departure represents its completion time. ||

Example 1.1.4 (Scheduling Tasks in a Central Processing Unit
(CPU))

One of the functions of a multi-tasking computer operating system is to
schedule the time that the CPU devotes to the different programs that have
to be executed. The exact processing times are usually not known in advance.
However, the distribution of these random processing times may be known
in advance, including their means and their variances. In addition, each task
usually has a certain priority level (the operating system typically allows
operators and users to specify the priority level or weight of each task). In
such case, the objective is to minimize the expected sum of the weighted
completion times of all tasks.

To avoid the situation where relatively short tasks remain in the system
for a long time waiting for much longer tasks that have a higher priority, the
operating system “slices” each task into little pieces. The operating system
then rotates these slices on the CPU so that in any given time interval, the
CPU spends some amount of time on each task. This way, if by chance the
processing time of one of the tasks is very short, the task will be able to leave
the system relatively quickly.

An interruption of the processing of a task is often referred to as a pre-
emption. It is clear that the optimal policy in such an environment makes
heavy use of preemptions. I
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It may not be immediately clear what impact schedules may have on objec-
tives of interest. Does it make sense to invest time and effort searching for a
good schedule rather than just choosing a schedule at random? In practice, it
often turns out that the choice of schedule does have a significant impact on
the system’s performance and that it does make sense to spend some time and
effort searching for a suitable schedule.

Scheduling can be difficult from a technical as well as from an implementa-
tion point of view. The type of difficulties encountered on the technical side are
similar to the difficulties encountered in other forms of combinatorial optimiza-
tion and stochastic modeling. The difficulties on the implementation side are
of a completely different kind. They may depend on the accuracy of the model
used for the analysis of the actual scheduling problem and on the reliability of
the input data that are needed.

1.2 The Scheduling Function in an Enterprise

The scheduling function in a production system or service organization must
interact with many other functions. These interactions are system-dependent
and may differ substantially from one situation to another. They often take
place within an enterprise-wide information system.

A modern factory or service organization often has an elaborate information
system in place that includes a central computer and database. Local area
networks of personal computers, workstations and data entry terminals, which
are connected to this central computer, may be used either to retrieve data from
the database or to enter new data. The software controlling such an elaborate
information system is typically referred to as an Enterprise Resource Planning
(ERP) system. A number of software companies specialize in the development
of such systems, including SAP, J.D. Edwards, and PeopleSoft. Such an ERP
system plays the role of an information highway that traverses the enterprise
with, at all organizational levels, links to decision support systems.

Scheduling is often done interactively via a decision support system that is
installed on a personal computer or workstation linked to the ERP system.
Terminals at key locations connected to the ERP system can give departments
throughout the enterprise access to all current scheduling information. These
departments, in turn, can provide the scheduling system with up-to-date infor-
mation concerning the statuses of jobs and machines.

There are, of course, still environments where the communication between
the scheduling function and other decision making entities occurs in meetings
or through memos.

Scheduling in Manufacturing  Consider the following generic manufac-
turing environment and the role of its scheduling. Orders that are released in
a manufacturing setting have to be translated into jobs with associated due
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Fig. 1.1 Information flow diagram in a manufacturing system

dates. These jobs often have to be processed on the machines in a workcenter in
a given order or sequence. The processing of jobs may sometimes be delayed if
certain machines are busy and preemptions may occur when high priority jobs
arrive at machines that are busy. Unforeseen events on the shop floor, such as
machine breakdowns or longer-than-expected processing times, also have to be
taken into account, since they may have a major impact on the schedules. In
such an environment, the development of a detailed task schedule helps main-
tain efficiency and control of operations.

The shop floor is not the only part of the organization that impacts the
scheduling process. It is also affected by the production planning process that
handles medium- to long-term planning for the entire organization. This pro-
cess attempts to optimize the firm’s overall product mix and long-term resource
allocation based on its inventory levels, demand forecasts and resource require-
ments. Decisions made at this higher planning level may impact the scheduling
process directly. Figure 1.1 depicts a diagram of the information flow in a man-
ufacturing system.
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In a manufacturing environment, the scheduling function has to interact
with other decision making functions. One popular system that is widely used
is the Material Requirements Planning (MRP) system. After a schedule has
been generated it is necessary that all raw materials and resources are available
at the specified times. The ready dates of all jobs have to be determined jointly
by the production planning/scheduling system and the MRP system.

MRP systems are normally fairly elaborate. Each job has a Bill Of Materials
(BOM) itemizing the parts required for production. The MRP system keeps
track of the inventory of each part. Furthermore, it determines the timing of
the purchases of each one of the materials. In doing so, it uses techniques such
as lot sizing and lot scheduling that are similar to those used in scheduling
systems. There are many commercial MRP software packages available and,
as a result, there are many manufacturing facilities with MRP systems. In the
cases where the facility does not have a scheduling system, the MRP system
may be used for production planning purposes. However, in complex settings it
is not easy for an MRP system to do the detailed scheduling satisfactorily.

Scheduling in Services  Describing a generic service organization and a
typical scheduling system is not as easy as describing a generic manufactur-
ing organization. The scheduling function in a service organization may face
a variety of problems. It may have to deal with the reservation of resources,
e.g., the assignment of planes to gates (see Example 1.1.3), or the reservation
of meeting rooms or other facilities. The models used are at times somewhat
different from those used in manufacturing settings. Scheduling in a service en-
vironment must be coordinated with other decision making functions, usually
within elaborate information systems, much in the same way as the scheduling
function in a manufacturing setting. These information systems usually rely
on extensive databases that contain all the relevant information with regard to
availability of resources and (potential) customers. The scheduling system inter-
acts often with forecasting and yield management modules. Figure 1.2 depicts
the information flow in a service organization such as a car rental agency. In
contrast to manufacturing settings, there is usually no MRP system in a service
environment.

1.3 Outline of the Book

This book focuses on both the theory and the applications of scheduling. The
theoretical side deals with the detailed sequencing and scheduling of jobs. Given
a collection of jobs requiring processing in a certain machine environment, the
problem is to sequence these jobs, subject to given constraints, in such a way
that one or more performance criteria are optimized. The scheduler may have to
deal with various forms of uncertainties, such as random job processing times,
machines subject to breakdowns, rush orders, and so on.
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Thousands of scheduling problems and models have been studied and ana-
lyzed in the past. Obviously, only a limited number are considered in this book;
the selection is based on the insight they provide, the methodology needed for
their analysis and their importance in applications.

Although the applications driving the models in this book come mainly from
manufacturing and production environments, it is clear from the examples in
Section 1.1 that scheduling plays a role in a wide variety of situations. The
models and concepts considered in this book are applicable in other settings as
well.

This book is divided into three parts. Part I (Chapters 2 to 8) deals with
deterministic scheduling models. In these chapters it is assumed that there are
a finite number of jobs that have to be scheduled with one or more objectives to
be minimized. Emphasis is placed on the analysis of relatively simple priority
or dispatching rules. Chapter 2 discusses the notation and gives an overview
of the models that are considered in the subsequent chapters. Chapters 3 to
8 consider the various machine environments. Chapters 3 and 4 deal with the
single machine, Chapter 5 with machines in parallel, Chapter 6 with machines
in series and Chapter 7 with the more complicated job shop models. Chapter 8
focuses on open shops in which there are no restrictions on the routings of the
jobs in the shop.

Part II (Chapters 9 to 13) deals with stochastic scheduling models. These
chapters, in most cases, also assume that a given (finite) number of jobs have
to be scheduled. The job data, such as processing times, release dates and due
dates may not be exactly known in advance; only their distributions are known
in advance. The actual processing times, release dates and due dates become
known only at the completion of the processing or at the actual occurrence of
the release or due date. In these models a single objective has to be minimized,
usually in expectation. Again, an emphasis is placed on the analysis of relatively
simple priority or dispatching rules. Chapter 9 contains preliminary material.
Chapter 10 covers the single machine environment. Chapter 11 also covers the



8 1 Introduction

single machine, but in this chapter it is assumed that the jobs are released
at different points in time. This chapter establishes the relationship between
stochastic scheduling and the theory of priority queues. Chapter 12 focuses on
machines in parallel and Chapter 13 describes the more complicated flow shop,
job shop, and open shop models.

Part IIT (Chapters 14 to 20) deals with applications and implementation
issues. Algorithms are described for a number of real world scheduling prob-
lems. Design issues for scheduling systems are discussed and some examples
of scheduling systems are given. Chapters 14 and 15 describe various general
purpose procedures that have proven to be useful in industrial scheduling sys-
tems. Chapter 16 describes a number of real world scheduling problems and how
they have been dealt with in practice. Chapter 17 focuses on the basic issues
concerning the design, the development and the implementation of scheduling
systems, and Chapter 18 discusses the more advanced concepts in the design
and implementation of scheduling systems. Chapter 19 gives some examples of
actual implementations. Chapter 20 ponders on what lies ahead in scheduling.

Appendices A, B, C, and D present short overviews of some of the ba-
sic methodologies, namely mathematical programming, dynamic programming,
constraint programming, and complexity theory. Appendix E contains a com-
plexity classification of the deterministic scheduling problems, while Appendix F
presents an overview of the stochastic scheduling problems. Appendix G lists
a number of scheduling systems that have been developed in industry and
academia. Appendix H provides some guidelines for using the LEKIN schedul-
ing system. The LEKIN system is included on the CD-ROM that comes with
the book.

This book is designed for either a masters level course or a beginning PhD
level course in Production Scheduling. When used for a senior level course, the
topics most likely covered are from Parts I and III. Such a course can be given
without getting into complexity theory: one can go through the chapters of
Part I skipping all complexity proofs without loss of continuity. A masters level
course may cover topics from Part II as well. Even though all three parts are
fairly self-contained, it is helpful to go through Chapter 2 before venturing into
Part II.

Prerequisite knowledge for this book is an elementary course in Operations
Research on the level of Hillier and Lieberman’s Introduction to Operations
Research and an elementary course in stochastic processes on the level of Ross’s
Introduction to Probability Models.

Comments and References

During the last four decades many books have appeared that focus on sequenc-
ing and scheduling. These books range from the elementary to the more ad-
vanced.
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A volume edited by Muth and Thompson (1963) contains a collection of pa-
pers focusing primarily on computational aspects of scheduling. One of the bet-
ter known textbooks is the one by Conway, Maxwell and Miller (1967) (which,
even though slightly out of date, is still very interesting); this book also deals
with some of the stochastic aspects and with priority queues. A more recent text
by Baker (1974) gives an excellent overview of the many aspects of deterministic
scheduling. However, this book does not deal with computational complexity is-
sues since it appeared just before research in computational complexity started
to become popular. The book by Coffman (1976) is a compendium of papers
on deterministic scheduling; it does cover computational complexity. An intro-
ductory textbook by French (1982) covers most of the techniques that are used
in deterministic scheduling. The proceedings of a NATO workshop, edited by
Dempster, Lenstra and Rinnooy Kan (1982), contains a number of advanced
papers on deterministic as well as on stochastic scheduling. The relatively ad-
vanced book by Blazewicz, Cellary, Slowinski and Weglarz (1986) focuses mainly
on resource constraints and multi-objective deterministic scheduling. The book
by Blazewicz, Ecker, Schmidt and Weglarz (1993) is somewhat advanced and
deals primarily with the computational aspects of deterministic scheduling mod-
els and their applications to manufacturing. The more applied text by Morton
and Pentico (1993) presents a detailed analysis of a large number of scheduling
heuristics that are useful for practitioners. The monograph by Dauzeére-Péres
and Lasserre (1994) focuses primarily on job shop scheduling. A collection of
papers, edited by Zweben and Fox (1994), describes a number of scheduling sys-
tems and their actual implementations. The two books by Tanaev, Gordon and
Shafransky (1994) and Tanaev, Sotskov and Strusevich (1994) are the English
translations of two fairly general scheduling texts that had appeared earlier in
Russian. Another collection of papers, edited by Brown and Scherer (1995) also
describe various scheduling systems and their implementation. The proceedings
of a workshop edited by Chrétienne, Coffman, Lenstra and Liu (1995) contain
a set of interesting papers concerning primarily deterministic scheduling. The
textbook by Baker (1995) is very useful for an introductory course in sequenc-
ing and scheduling. Brucker (1995) presents, in the first edition of his book, a
very detailed algorithmic analysis of the many deterministic scheduling mod-
els. Parker (1995) gives a similar overview and tends to focus on problems with
precedence constraints or other graph-theoretic issues. Sule (1996) is a more ap-
plied text with a discussion of some interesting real world problems. Blazewicz,
Ecker, Pesch, Schmidt and Weglarz (1996) is an extended edition of the ear-
lier work by Blazewicz, Ecker, Schmidt and Weglarz (1993). The monograph
by Ovacik and Uzsoy (1997) is entirely dedicated to decomposition methods
for complex job shops. The two volumes edited by Lee and Lei (1997) contain
many interesting theoretical as well as applied papers. The book by Pinedo and
Chao (1999) is more application oriented and describes a number of different
scheduling models for problems arising in manufacturing and in services. The
monograph by Bagchi (1999) focuses on the application of genetic algorithms
to multi-objective scheduling problems. The monograph by Baptiste, LePape
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and Nuijten (2001) covers applications of constraint programming techniques
to job shop scheduling. The volume edited by Nareyek (2001) contains papers
on local search applied to job shop scheduling. T’kindt and Billaut (2002, 2006)
provide an excellent treatise of multicriteria scheduling. Brucker (2004) is an ex-
panded version of the original first edition that appeared in 1995. The Handbook
of Scheduling, edited by Leung (2004), contains many chapters on all aspects of
scheduling. The text by Pinedo (2005) is a modified and extended version of
the earlier one by Pinedo and Chao (1999). The volume edited by Janiak (2006)
contains a collection of papers that focus on scheduling problems in computer
and manufacturing systems. Brucker and Knust (2006) focus in their book on
more complicated scheduling models. Dawande, Geismar, Sethi and Sriskan-
darajah (2007) focus in their more advanced text on the scheduling of robotic
cells; these manufacturing settings are, in a sense, extensions of flow shops.
The monograph by Gawiejnowicz (2008) provides a comprehensive overview of
time-dependent scheduling problems. The text by Baker and Trietsch (2009)
contains several chapters that focus on topics not covered in other books. The
text by Sotskov, Sotskova, Lai and Werner (2010) as well as the book by Sarin,
Nagarajan, and Liao (2010) focus on stochastic scheduling.

Besides the books listed above, numerous survey articles have appeared, each
one with a large number of references. The articles by Graves (1981) and Ro-
dammer and White (1988) review production scheduling. Atabakhsh (1991)
presents a survey of constraint based scheduling systems that use artificial in-
telligence techniques and Noronha and Sarma (1991) review knowledge-based
approaches for scheduling problems. Smith (1992) focuses in his survey on the
development and implementation of scheduling systems. Lawler, Lenstra, Rin-
nooy Kan and Shmoys (1993) give a detailed overview of deterministic sequenc-
ing and scheduling and Righter (1994) does the same for stochastic schedul-
ing. Queyranne and Schulz (1994) provide an in depth analysis of polyhedral
approaches to nonpreemptive machine scheduling problems. Chen, Potts and
Woeginger (1998) review computational complexity, algorithms and approx-
imability in deterministic scheduling. Sgall (1998) and Pruhs, Sgall and Torng
(2004) present surveys of an area within deterministic scheduling referred to as
online scheduling. Even though online scheduling is often considered part of de-
terministic scheduling, the theorems obtained may at times provide interesting
new insights into certain stochastic scheduling models.
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Over the last fifty years a considerable amount of research effort has been fo-
cused on deterministic scheduling. The number and variety of models considered
is astounding. During this time a notation has evolved that succinctly captures
the structure of many (but for sure not all) deterministic models that have been
considered in the literature.

The first section in this chapter presents an adapted version of this notation.
The second section contains a number of examples and describes some of the
shortcomings of the framework and notation. The third section describes sev-
eral classes of schedules. A class of schedules is typically characterized by the
freedom the scheduler has in the decision-making process. The last section dis-
cusses the complexity of the scheduling problems introduced in the first section.
This last section can be used, together with Appendixes D and E, to classify
scheduling problems according to their complexity.

2.1 Framework and Notation

In all the scheduling problems considered the number of jobs and the number
of machines are assumed to be finite. The number of jobs is denoted by n and
the number of machines by m. Usually, the subscript j refers to a job while the
subscript ¢ refers to a machine. If a job requires a number of processing steps
or operations, then the pair (7, ) refers to the processing step or operation of
job j on machine i. The following pieces of data are associated with job j.

M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 13
DOI 10.1007/978-1-4614-2361-4 2, © Springer Science+Business Media, LLC 2012
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Processing time (p;;) The p;; represents the processing time of job j on
machine ¢. The subscript ¢ is omitted if the processing time of job j does not
depend on the machine or if job j is only to be processed on one given machine.

Release date (r;) The release date r; of job j may also be referred to as
the ready date. It is the time the job arrives at the system, i.e., the earliest time
at which job j can start its processing.

Due date (d;) The due date d; of job j represents the committed shipping or
completion date (i.e., the date the job is promised to the customer). Completion
of a job after its due date is allowed, but then a penalty is incurred. When a
due date must be met it is referred to as a deadline and denoted by Jj.

Weight (w;) The weight w; of job j is basically a priority factor, denoting
the importance of job j relative to the other jobs in the system. For example,
this weight may represent the actual cost of keeping the job in the system. This
cost could be a holding or inventory cost; it also could represent the amount of
value already added to the job.

A scheduling problem is described by a triplet « | 8| 7. The « field describes
the machine environment and contains just one entry. The g field provides
details of processing characteristics and constraints and may contain no entry
at all, a single entry, or multiple entries. The  field describes the objective to
be minimized and often contains a single entry.

The possible machine environments specified in the « field are:

Single machine (1) The case of a single machine is the simplest of all pos-
sible machine environments and is a special case of all other more complicated
machine environments.

Identical machines in parallel (Pm) There are m identical machines in
parallel. Job j requires a single operation and may be processed on any one of
the m machines or on any one that belongs to a given subset. If job j cannot
be processed on just any machine, but only on any one belonging to a specific
subset M}, then the entry M; appears in the 3 field.

Machines in parallel with different speeds (Qm) There are m machines
in parallel with different speeds. The speed of machine i is denoted by v;. The
time p;; that job j spends on machine 7 is equal to p;/v; (assuming job j receives
all its processing from machine ). This environment is referred to as uniform
machines. If all machines have the same speed, i.e., v; = 1 for all ¢ and p;; = p;,
then the environment is identical to the previous one.

Unrelated machines in parallel (Rm) This environment is a further
generalization of the previous one. There are m different machines in parallel.
Machine 7 can process job j at speed v;;. The time p;; that job j spends on
machine ¢ is equal to p;/v;; (again assuming job j receives all its processing
from machine 7). If the speeds of the machines are independent of the jobs, i.e.,
v; = v; for all ¢ and j, then the environment is identical to the previous one.
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Flow shop (F'm) There are m machines in series. Each job has to be
processed on each one of the m machines. All jobs have to follow the same
route, i.e., they have to be processed first on machine 1, then on machine 2,
and so on. After completion on one machine a job joins the queue at the next
machine. Usually, all queues are assumed to operate under the First In First
Out (FIFO) discipline, that is, a job cannot ”pass” another while waiting in
a queue. If the FIFO discipline is in effect the flow shop is referred to as a
permutation flow shop and the § field includes the entry prmu.

Flexible flow shop (F'Fc) A flexible flow shop is a generalization of the flow
shop and the parallel machine environments. Instead of m machines in series
there are c stages in series with at each stage a number of identical machines in
parallel. Each job has to be processed first at stage 1, then at stage 2, and so on.
A stage functions as a bank of parallel machines; at each stage job j requires
processing on only one machine and any machine can do. The queues between
the various stages may or may not operate according to the First Come First
Served (FCFS) discipline. (Flexible flow shops have in the literature at times
also been referred to as hybrid flow shops and as multi-processor flow shops.)

Job shop (Jm) In a job shop with m machines each job has its own
predetermined route to follow. A distinction is made between job shops in which
each job visits each machine at most once and job shops in which a job may
visit each machine more than once. In the latter case the g-field contains the
entry rcrc for recirculation.

Flexible job shop (F'Jc¢) A flexible job shop is a generalization of the job
shop and the parallel machine environments. Instead of m machines in series
there are ¢ work centers with at each work center a number of identical machines
in parallel. Each job has its own route to follow through the shop; job j requires
processing at each work center on only one machine and any machine can do.
If a job on its route through the shop may visit a work center more than once,
then the §-field contains the entry rcre for recirculation.

Open shop (Om) There are m machines. Each job has to be processed
again on each one of the m machines. However, some of these processing times
may be zero. There are no restrictions with regard to the routing of each job
through the machine environment. The scheduler is allowed to determine a
route for each job and different jobs may have different routes.

The processing restrictions and constraints specified in the § field may in-
clude multiple entries. Possible entries in the 3 field are:

Release dates (r;) If this symbol appears in the 3 field, then job j cannot
start its processing before its release date r;. If r; does not appear in the g
field, the processing of job j may start at any time. In contrast to release dates,
due dates are not specified in this field. The type of objective function gives
sufficient indication whether or not there are due dates.
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Preemptions (prmp) Preemptions imply that it is not necessary to keep a
job on a machine, once started, until its completion. The scheduler is allowed
to interrupt the processing of a job (preempt) at any point in time and put a
different job on the machine instead. The amount of processing a preempted job
already has received is not lost. When a preempted job is afterwards put back on
the machine (or on another machine in the case of parallel machines), it only
needs the machine for its remaining processing time. When preemptions are
allowed prmp is included in the § field; when prmp is not included, preemptions
are not allowed.

Precedence constraints (prec) Precedence constraints may appear in a
single machine or in a parallel machine environment, requiring that one or
more jobs may have to be completed before another job is allowed to start its
processing. There are several special forms of precedence constraints: if each
job has at most one predecessor and at most one successor, the constraints are
referred to as chains. If each job has at most one successor, the constraints are
referred to as an intree. If each job has at most one predecessor the constraints
are referred to as an outtree. If no prec appears in the g field, the jobs are not
subject to precedence constraints.

Sequence dependent setup times (s;;) The s;; represents the sequence
dependent setup time that is incurred between the processing of jobs j and k;
sor denotes the setup time for job k if job k is first in the sequence and s;q the
clean-up time after job j if job j is last in the sequence (of course, so; and sjo
may be zero). If the setup time between jobs j and k& depends on the machine,
then the subscript ¢ is included, i.e., si,. If no s;, appears in the f field, all
setup times are assumed to be 0 or sequence independent, in which case they
are simply included in the processing times.

Job families (fmls) The n jobs belong in this case to F different job families.
Jobs from the same family may have different processing times, but they can
be processed on a machine one after another without requiring any setup in
between. However, if the machine switches over from one family to another, say
from family g to family h, then a setup is required. If this setup time depends
on both families g and h and is sequence dependent, then it is denoted by sgp.
If this setup time depends only on the family about to start, i.e., family h,
then it is denoted by sjp. If it does not depend on either family, it is denoted
by s.

Batch processing (batch(b)) A machine may be able to process a number of
jobs, say b, simultaneously; that is, it can process a batch of up to b jobs at the
same time. The processing times of the jobs in a batch may not be all the same
and the entire batch is finished only when the last job of the batch has been
completed, implying that the completion time of the entire batch is determined
by the job with the longest processing time. If b = 1, then the problem reduces to
a conventional scheduling environment. Another special case that is of interest
is b = o0, i.e., there is no limit on the number of jobs the machine can handle
at any time.
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Breakdowns (brkdwn) Machine breakdowns imply that a machine may not
be continuously available. The periods that a machine is not available are, in
this part of the book, assumed to be fixed (e.g., due to shifts or scheduled main-
tenance). If there are a number of identical machines in parallel, the number of
machines available at any point in time is a function of time, i.e., m(t). Machine
breakdowns are at times also referred to as machine availability constraints.

Machine eligibility restrictions (A{;) The M; symbol may appear in the
B field when the machine environment is m machines in parallel (Pm). When
the M; is present, not all m machines are capable of processing job j. Set M;
denotes the set of machines that can process job j. If the 3 field does not contain
M;, job j may be processed on any one of the m machines.

Permutation (prmu) A constraint that may appear in the flow shop envi-
ronment is that the queues in front of each machine operate according to the
First In First Out (FIFO) discipline. This implies that the order (or permuta-
tion) in which the jobs go through the first machine is maintained throughout
the system.

Blocking (block) Blocking is a phenomenon that may occur in flow shops.
If a flow shop has a limited buffer in between two successive machines, then it
may happen that when the buffer is full the upstream machine is not allowed to
release a completed job. Blocking implies that the completed job has to remain
on the upstream machine preventing (i.e., blocking) that machine from working
on the next job. The most common occurrence of blocking that is considered in
this book is the case with zero buffers in between any two successive machines.
In this case a job that has completed its processing on a given machine cannot
leave the machine if the preceding job has not yet completed its processing on
the next machine; thus, the blocked job also prevents (or blocks) the next job
from starting its processing on the given machine. In the models with blocking
that are considered in subsequent chapters the assumption is made that the
machines operate according to FIFO. That is, block implies prmu.

No-wait (nwt) The no-wait requirement is another phenomenon that may
occur in flow shops. Jobs are not allowed to wait between two successive ma-
chines. This implies that the starting time of a job at the first machine has to
be delayed to ensure that the job can go through the flow shop without having
to wait for any machine. An example of such an operation is a steel rolling mill
in which a slab of steel is not allowed to wait as it would cool off during a wait.
It is clear that under no-wait the machines also operate according to the FIFO
discipline.

Recirculation (rere) Recirculation may occur in a job shop or flexible job
shop when a job may visit a machine or work center more than once.

Any other entry that may appear in the ( field is self explanatory. For exam-
ple, p; = p implies that all processing times are equal and d; = d implies that
all due dates are equal. As stated before, due dates, in contrast to release dates,
are usually not explicitly specified in this field; the type of objective function
gives sufficient indication whether or not the jobs have due dates.
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d; G

Fig. 2.1 Due date related penalty functions

The objective to be minimized is always a function of the completion times
of the jobs, which, of course, depend on the schedule. The completion time of
the operation of job j on machine i is denoted by Cj;. The time job j exits the
system (that is, its completion time on the last machine on which it requires
processing) is denoted by C;. The objective may also be a function of the due
dates. The lateness of job j is defined as

L; =Cj —dj,

which is positive when job j is completed late and negative when it is completed
early. The tardiness of job j is defined as

T; = max(C; — d;,0) = max(L;,0).

The difference between the tardiness and the lateness lies in the fact that the
tardiness never is negative. The unit penalty of job j is defined as

1if Cj > dj
7] 0 otherwise

The lateness, the tardiness and the unit penalty are the three basic due date
related penalty functions considered in this book. The shape of these functions
are depicted in Figure 2.1.

Examples of possible objective functions to be minimized are:

Makespan (Cpax) The makespan, defined as max(Ch, ..., Cy), is equivalent
to the completion time of the last job to leave the system. A minimum makespan
usually implies a good utilization of the machine(s).
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Maximum Lateness (Lyx) The maximum lateness, Liyax, is defined as
max(L1,...,Ly). It measures the worst violation of the due dates.

Total weighted completion time () w;C;) The sum of the weighted
completion times of the n jobs gives an indication of the total holding or in-
ventory costs incurred by the schedule. The sum of the completion times is in
the literature often referred to as the flow time. The total weighted completion
time is then referred to as the weighted flow time.

Discounted total weighted completion time (> w;(1 —e~"¢)) This is
a more general cost function than the previous one, where costs are discounted
at a rate of r, 0 < r < 1, per unit time. That is, if job j is not completed
by time ¢ an additional cost w;re~"dt is incurred over the period [t,¢ + dt]. If
job j is completed at time t the total cost incurred over the period [0,t] is
w;j(1 — e~ ). The value of r is usually close to 0, say 0.1 or 10 %.

Total weighted tardiness () w;T};) This is also a more general cost func-
tion than the total weighted completion time.

Weighted number of tardy jobs (3 w;U;) The weighted number of tardy
jobs is not only a measure of academic interest, it is often an objective in practice
as it is a measure that can be recorded very easily.

All the objective functions above are so-called regular performance mea-
sures. A regular performance measure is a function that is nondecreasing in
Ci,...,Cy. Recently researchers have begun to study objective functions that
are not regular. For example, when job j has a due date d;, it may be subject
to an earliness penalty, where the earliness of job j is defined as

Ej = max(dj — Cj, O)

This earliness penalty is nonincreasing in C;. An objective such as the total
earliness plus the total tardiness, i.e.,

n n
> Ei+> 15
j=1 j=1

is therefore not regular. A more general objective that is not regular is the total
weighted earliness plus the total weighted tardiness, i.e.,

n n
’ "
E ’LUjEj + E w; Tj.
j=1 j=1

The weight associated with the earliness of job j w;) may be different from
1

(
the weight associated with the tardiness of job j (wf).
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2.2 Examples

The following examples illustrate the notation:

Example 2.2.1 (A Flexible Flow Shop)

FFc|rj| > w;T; denotes a flexible flow shop. The jobs have release dates
and due dates and the objective is the minimization of the total weighted tar-
diness. Example 1.1.1 in Section 1.1 (the paper bag factory) can be modeled
as such. Actually, the problem described in Section 1.1 has some additional
characteristics including sequence dependent setup times at each of the three
stages. In addition, the processing time of job j on machine i has a special
structure: it depends on the number of bags and on the speed of the ma-
chine. I

Example 2.2.2 (A Flexible Job Shop)

FJc|rj,sijk,rere | Y w;T; refers to a flexible job shop with ¢ work centers.
The jobs have different release dates and are subject to sequence dependent
setup times that are machine dependent. There is recirculation, so a job may
visit a work center more than once. The objective is to minimize the total
weighted tardiness. It is clear that this problem is a more general problem
than the one described in the previous example. Example 1.1.2 in Section
1.1 (the semiconductor manufacturing facility) can be modeled as such. ||

Example 2.2.3 (A Parallel Machine Environment)

Pm | rj,M; | > w;T; denotes a system with m machines in parallel. Job j
arrives at release date r; and has to leave by the due date d;. Job j may be
processed only on one of the machines belonging to the subset Mj;. If job j
is not completed in time a penalty w;T} is incurred. This model can be used
for the gate assignment problem described in Example 1.1.3. I

Example 2.2.4 (A Single Machine Environment)

1| rj,prmp | 3> w;C; denotes a single machine system with job j entering
the system at its release date r;. Preemptions are allowed. The objective to
be minimized is the sum of the weighted completion times. This model can
be used to study the deterministic counterpart of the problem described in
Example 1.1.4. I

Example 2.2.5 (Sequence Dependent Setup Times)

1 | sjx | Cmax denotes a single machine system with n jobs subject to
sequence dependent setup times, where the objective is to minimize the
makespan. It is well-known that this problem is equivalent to the so-called
Travelling Salesman Problem (TSP), where a salesman has to tour n cities
in such a way that the total distance traveled is minimized (see Appendix D
for a formal definition of the TSP). I
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Example 2.2.6 (A Project)

Poo | prec | Cpax denotes a scheduling problem with n jobs subject to
precedence constraints and an unlimited number of machines (or resources)
in parallel. The total time of the entire project has to be minimized. This type
of problem is very common in project planning in the construction industry
and has lead to techniques such as the Critical Path Method (CPM) and the
Project Fvaluation and Review Technique (PERT). I

Example 2.2.7 (A Flow Shop)

Fm | pij = p; | > w,;C; denotes a proportionate flow shop environment with
m machines in series; the processing times of job j on all m machines are
identical and equal to p; (hence the term proportionate). The objective is to
find the order in which the n jobs go through the system so that the sum of
the weighted completion times is minimized. I

Example 2.2.8 (A Job Shop)

Jm || Ciax denotes a job shop problem with m machines. There is no re-
circulation, so a job visits each machine at most once. The objective is to
minimize the makespan. This problem is considered a classic in the schedul-
ing literature and has received an enormous amount of attention. I

Of course, there are many scheduling models that are not captured by this
framework. One can define, for example, a more general flexible job shop in
which each work center consists of a number of unrelated machines in parallel.
When a job on its route through the system arrives at a bank of unrelated
machines, it may be processed on any one of the machines, but its processing
time now depends on the machine on which it is processed.

One can also define a model that is a mixture of a job shop and an open shop.
The routes of some jobs are fixed, while the routes of other jobs are (partially)
open.

The framework described in Section 2.1 has been designed primarily for mod-
els with a single objective. Most research in the past has concentrated on models
with a single objective. Recently, researchers have begun studying models with
multiple objectives as well.

Various other scheduling features, that are not mentioned here, have been
studied and analyzed in the literature. Such features include periodic or cyclic
scheduling, personnel scheduling, and resource constrained scheduling.

2.3 Classes of Schedules

In scheduling terminology a distinction is often made between a sequence, a
schedule and a scheduling policy. A sequence usually corresponds to a permu-
tation of the n jobs or the order in which jobs are to be processed on a given
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machine. A schedule usually refers to an allocation of jobs within a more com-
plicated setting of machines, allowing possibly for preemptions of jobs by other
jobs that are released at later points in time. The concept of a scheduling policy
is often used in stochastic settings: a policy prescribes an appropriate action
for any one of the states the system may be in. In deterministic models usually
only sequences or schedules are of importance.

Assumptions have to be made with regard to what the scheduler may and
may not do when he generates a schedule. For example, it may be the case that
a schedule may not have any unforced idleness on any machine. This class of
schedules can be defined as follows.

Definition 2.3.1 (Non-Delay Schedule). A feasible schedule is called
non-delay if no machine is kept idle while an operation is waiting for processing.

Requiring a schedule to be non-delay is equivalent to prohibiting unforced
idleness. For many models, including those that allow preemptions and have
regular objective functions, there are optimal schedules that are non-delay. For
many models considered in this part of the book the goal is to find an opti-
mal schedule that is non-delay. However, there are models where it may be
advantageous to have periods of unforced idleness.

A smaller class of schedules, within the class of all non-delay schedules, is the
class of nonpreemptive non-delay schedules. Nonpreemptive non-delay schedules
may lead to some interesting and unexpected anomalies.

Example 2.3.2 (A Scheduling Anomaly)

Consider an instance of P2 | prec | Cpax with 10 jobs and the following
processing times.

jobs 1 2345678910
p;i 87723228815

The jobs are subject to the precedence constraints depicted in Figure 2.2.
The makespan of the non-delay schedule depicted in Figure 2.3.a is 31 and
the schedule is clearly optimal.

One would expect that, if each one of the ten processing times is reduced
by one time unit, the makespan would be less than 31. However, requiring
the schedule to be non-delay results in the schedule depicted in Figure 2.3.b
with a makespan of 32.

Suppose that an additional machine is made available and that there are
now three machines instead of two. One would again expect the makespan
with the original set of processing times to be less than 31. Again, the non-
delay requirement has an unexpected effect: the makespan is now 36. I
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Fig. 2.2 Precedence constraints graph for Example 2.3.2.
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Fig. 2.3 Gantt charts of nondelay schedules: (a) Original schedule
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Machine 1

Machine 2 | 2 | 1

Machine 3

\ \ \ \ \
0 2 4 6 8 t

Fig. 2.4 An active schedule that is not nondelay.

Some heuristic procedures and algorithms for job shops are based on the
construction of nonpreemptive schedules with certain special properties. Two
classes of nonpreemptive schedules are of importance for certain algorithmic
procedures for job shops.

Definition 2.3.3 (Active Schedule). A feasible nonpreemptive schedule
is called active if it is not possible to construct another schedule, through changes
in the order of processing on the machines, with at least one operation finishing
earlier and no operation finishing later.

In other words, a schedule is active if no operation can be put into an empty
hole earlier in the schedule while preserving feasibility. A nonpreemptive non-
delay schedule has to be active but the reverse is not necessarily true. The
following example describes a schedule that is active but not non-delay.

Example 2.3.4 (An Active Schedule)

Consider a job shop with three machines and two jobs. Job 1 needs one time
unit on machine 1 and 3 time units on machine 2. Job 2 needs 2 time units
on machine 3 and 3 time units on machine 2. Both jobs have to be processed
last on machine 2. Consider the schedule which processes job 2 on machine 2
before job 1 (see Figure 2.4). It is clear that this schedule is active; reversing
the sequence of the two jobs on machine 2 postpones the processing of job 2.
However, the schedule is not non-delay. Machine 2 remains idle till time 2,
while there is already a job available for processing at time 1. I

It can be shown that, when the objective v is regular, there exists for Jm || v
an optimal schedule that is active.
An even larger class of nonpreemptive schedules can be defined as follows.

Definition 2.3.5 (Semi-Active Schedule). A feasible nonpreemptive
schedule is called semi-active if no operation can be completed earlier without
changing the order of processing on any one of the machines.

It is clear that an active schedule has to be semi-active. However, the reverse
is not necessarily true.
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Fig. 2.5 A semi-active schedule that is not active.
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Fig. 2.6 Venn diagram of classes of nonpreemptive schedules for job
shops

Example 2.3.6 (A Semi-Active Schedule)

Consider again a job shop with three machines and two jobs. The routing of
the two jobs is the same as in the previous example. The processing times of
job 1 on machines 1 and 2 are both equal to 1. The processing times of job 2
on machines 2 and 3 are both equal to 2. Consider the schedule under which
job 2 is processed on machine 2 before job 1 (see Figure 2.5). This implies
that job 2 starts its processing on machine 2 at time 2 and job 1 starts its
processing on machine 2 at time 4. This schedule is semi-active. However, it
is not active, as job 1 can be processed on machine 2 without delaying the
processing of job 2 on machine 2.

An example of a schedule that is not even semi-active can be constructed
easily. Postpone the start of the processing of job 1 on machine 2 for one time
unit, i.e., machine 2 is kept idle for one unit of time between the processing
of jobs 2 and 1. Clearly, this schedule is not even semi-active. I

Figure 2.6 shows a Venn diagram of the three classes of nonpreemptive sched-
ules: the nonpreemptive non-delay schedules, the active schedules, and the semi-
active schedules.
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2.4 Complexity Hierarchy

Often, an algorithm for one scheduling problem can be applied to another
scheduling problem as well. For example, 1 || > C; is a special case of
1 || Y w;C; and a procedure for 1 || > w;C; can, of course, also be used
for 1 || >°Cj;. In complexity terminology it is then said that 1 || } C; reduces
to 1 || > w;C;. This is usually denoted by

LI[22C o 1| Y w;Cj.

Based on this concept a chain of reductions can be established. For example,
LI[X2C o 1| X w;Cy o< Pm|| 3 w;Cy o< Qm | prec| 3 w;C.
Of course, there are also many problems that are not comparable with one

another. For example, Pm || >~ w;Tj is not comparable to Jm || Crmax.

A considerable effort has been made to establish a problem hierarchy de-
scribing the relationships between the hundreds of scheduling problems. In the
comparisons between the complexities of the different scheduling problems it
is of interest to know how a change in a single element in the classification of
a problem affects its complexity. In Figure 2.7 a number of graphs are exhib-
ited that help determine the complexity hierarchy of deterministic scheduling
problems. Most of the hierarchy depicted in these graphs is relatively straight-
forward. However, two of the relationships may need some explaining, namely

al|B| Lmax a‘B|ZUj

and

04|6‘Lmax o8 a|B|ZT]
It can, indeed, be shown that a procedure for o | 8 | > U; and a procedure for
a| B> T, can be applied to @ | 8 | Limax with only minor modifications (see
Exercise 2.23).

A significant amount of research in deterministic scheduling has been de-
voted to finding efficient, so-called polynomial time, algorithms for scheduling
problems. However, many scheduling problems do not have a polynomial time
algorithm; these problems are the so-called NP-hard problems. Verifying that
a problem is NP-hard requires a formal mathematical proof (see Appendix D).

Research in the past has focused in particular on the borderline between
polynomial time solvable problems and NP-hard problems. For example, in the
string of problems described above, 1 || > w;C; can be solved in polynomial
time, whereas Pm || Y w;C; is NP-hard, which implies that Qm | prec |
> w;C; is also NP-hard. The following examples illustrate the borderlines be-
tween easy and hard problems within given sets of problems.

Example 2.4.1 (A Complexity Hierarchy)
Consider the problems

(i) 11 Cmax,
(i) P2 || Crax,
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Fig. 2.7 Complexity hierarchies of deterministic scheduling problems:
(a) Machine environments (b) Processing restrictions and constraints

(c) Objective functions

(it)) 2 || Cona,
(iv) Jm || Crnax,
(v) FFc || Cuax-

The complexity hierarchy is depicted in Figure 2.8.

Example 2.4.2 (A Complexity Hierarchy)
Consider the problems
(i) 1] Linax,
(i) 1| prmp | Lmax,
(iii) 1|7 | Lmax,

27
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FFC | I Cm'rlX jm | I Cm'rlX
Hard
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Fig. 2.8 Complexity hierarchy of problems in Example 2.4.1

I

Pm”Lmax 1|rj|Lmax // 1|rj,prmp|Lmax

-

-

Hard __-- 1”Lmax 1|Prmp|Lmax

Easy
Fig. 2.9 Complexity hierarchy of problems in Example 2.4.2

(IV) 1 | Tj7p7”mp | Lmax>
(v) P || Lonas.

The complexity hierarchy is depicted in Figure 2.9. I

Exercises (Computational)

2.1. Consider the instance of 1 || > w;C; with the following processing times
and weights.

jobs 1 2 3 4
w; 611 95
p; 3 574

(a) Find the optimal sequence and compute the value of the objective.
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(b) Give an argument for positioning jobs with larger weight more towards
the beginning of the sequence and jobs with smaller weight more towards
the end of the sequence.

(¢) Give an argument for positioning jobs with smaller processing time
more towards the beginning of the sequence and jobs with larger processing
time more towards the end of the sequence.

(d) Determine which one of the following two generic rules is the most
suitable for the problem:

(i) sequence the jobs in decreasing order of w; — pj;

(ii) sequence the jobs in decreasing order of w;/p,.

2.2. Consider the instance of 1 || Lyax with the following processing times and
due dates.

jobs 1 2 3 4

p;, 54 3 6
d; 35 11 12

(a) Find the optimal sequence and compute the value of the objective.

(b) Give an argument for positioning jobs with earlier due dates more to-
wards the beginning of the sequence and jobs with later due dates more
towards the end of the sequence.

(c) Give an argument for positioning jobs with smaller processing time
more towards the beginning of the sequence and jobs with larger processing
time more towards the end of the sequence.

(d) Determine which one of the following four rules is the most suitable
generic rule for the problem:
(i) sequence the jobs in increasing order of d; + p;;
(ii) sequence the jobs in increasing order of d;p;;
(iii) sequence the jobs in increasing order of dj;
(iv) sequence the jobs in increasing order of p;.

2.3. Consider the instance of 1 || Y U; with the following processing times and
due dates.

jobs 1 2 3 4

p;, 76 4 8
dj 8911 14

(a) Find all optimal sequences and compute the value of the objective.
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(b) Formulate a generic rule based on the due dates and processing times
that yields an optimal sequence for any instance.

2.4. Consider the instance of 1 || Y~ T with the following processing times and
due dates.

jobs 1 2 3 4

p; 76 8 4
d; 8910 14

(a) Find all optimal sequences.

(b) Formulate a generic rule that is a function of the due dates and pro-
cessing times that yields an optimal sequence for any instance.

2.5. Find the optimal sequence for P5 || Cpax with the following 11 jobs.

jobs 1234567891011
p;i 998877665 5 5

2.6. Consider the instance of F'2 | prmu | Chax with the following processing
times.

jobs 1 2 3 4

P1j 86 4 12
D2j 4910 6

Find all optimal sequences and determine the makespan under an optimal se-
quence.

2.7. Consider the instance of F2 | block | Cpax with the same jobs and the
same processing times as in Exercise 2.6. There is no (zero) buffer between the
two machines. Find all optimal sequences and compute the makespan under an
optimal sequence.

2.8. Consider the instance of F'2 | nwt | Cpax with the same jobs and the same
processing times as in Exercise 2.6. Find all optimal sequences and compute the
makespan under an optimal sequence.

2.9. Consider the instance of O2 || Cpax with 4 jobs. The processing times of
the four jobs on the two machines are again as in Exercise 2.6. Find all optimal
schedules and compute the makespan under an optimal schedule.
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2.10. Consider the instance of J2 || Ciax with 4 jobs. The processing times
of the four jobs on the two machines are again as in Exercise 2.6. Jobs 1 and
2 have to be processed first on machine 1 and then on machine 2, while jobs 3
and 4 have to be processed first on machine 2 and then on machine 1. Find all
optimal schedules and determine the makespan under an optimal schedule.

Exercises (Theory)

2.11. Explain why « |p; =1,7; | v is easier than « | prmp,r; | v when all
processing times, release dates and due dates are integer.

2.12. Consider 1 | sjz = ar + b; | Cmax. That is, job j has two parameters
associated with it, namely a; and b;. If job j is followed by job k, there is a
setup time sj, = aj + b; required before the start of job k’s processing. The
setup time of the first job in the sequence, soi is ag, while the “clean-up” time
at the completion of the last job in the sequence, s;o, is b;. Show that this
problem is equivalent to 1 || Cinax and that the makespan therefore does not
depend on the sequence. Find an expression for the makespan.

2.13. Show that 1 | sjx | Cmax is equivalent to the following Travelling
Salesman Problem: A travelling salesman starts out from city 0, visits cities
1,2,...,n and returns to city 0, while minimizing the total distance travelled.
The distance from city 0 to city k is sor; the distance from city j to city k is
s and the distance from city j to city 0 is s;q.

2.14. Show that 1 | brkdwn,prmp | > w;C; reduces to 1 | rj,prmp |
ijCj.

2.15. Show that 1 | p; = 1 | > w;T; and 1 | pj = 1 | Limax are equivalent
to the assignment problem (see Appendix A for a definition of the assignment
problem).

2.16. Show that Pm | p; =1 | Y w;T; and Pm | pj = 1 | Lax are equiv-
alent to the transportation problem (see Appendix A for a definition of the
transportation problem).

2.17. Cousider P || Cihax. Show that for any non-delay schedule the following
inequalities hold:

ijgc

max S 2 X max (pla"'apna
m

ij)
)
2.18. Show how Pm | M; |~ reducesto Rm]|~.

2.19. Show that F'2 | block | Cax is equivalent to F2 | nwt | Chyax and show
that both problems are special cases of 1 | ;i | Cmax and therefore special cases
of the Travelling Salesman Problem.
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2.20. Consider an instance of Om | 8 | v and an instance of F'm | 8 | 7. The
two instances have the same number of machines, the same number of jobs, and
the jobs have the same processing times on the m machines. The two instances
are completely identical with the exception that one instance is an open shop
and the other instance a flow shop. Show that the value of the objective under
the optimal sequence in the flow shop is at least as large as the value of the
objective under the optimal sequence in the open shop.

2.21. Consider O2 || Cipax. Show that

n n
Cmax > max (ZpljaZp%')-
j=1 j=1

Find an instance of this problem where the optimal makespan is strictly larger
than the RHS.

2.22. Describe the complexity relationships between the problems

1) 1] > w;Cy,

(ii) 1]d; = d| 3 w;Ty,
(it) 1] p; = 1| X w;Tj,
(iv) 1] > w;Ty,

(v) Pm|pj =1|> w;Tj,
(vi) Pm || > w;Tj.

2.23. Show that a | 8 | Liax reduces to a | 8| Y. T; as wellas to | B | D Uj.
(Hint: Note that if the minimum Ly, is zero, the optimal solution with regard
to > U; and > Tj is zero as well. It suffices to show that a polynomial time
procedure for o | 5| > U; can be adapted easily for application to & | 8 | Lmax-
This can be done through a parametric analysis on the d;, i.e., solve a | 8 | > U;
with due dates d; + z and vary z.)

Comments and References

One of the first classification schemes for scheduling problems appeared in Con-
way, Maxwell and Miller (1967). Lawler, Lenstra and Rinnooy Kan (1982), in
their survey paper, modified and refined this scheme extensively. Herrmann,
Lee and Snowdon (1993) made another round of extensions. The framework
presented here is another variation of the Lawler, Lenstra and Rinnooy Kan
(1982) notation, with a slightly different emphasis.

For a survey of scheduling problems subject to availability constraints
(brkduwn), see Lee (2004) For surveys on scheduling problems with non-regular
objective functions, see Raghavachari (1988) and Baker and Scudder (1990).
For a survey of scheduling problems with job families and scheduling problems
with batch processing, see Potts and Kovalyov (2000).
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The definitions of non-delay, active, and semi-active schedules have been
around for a long time; see, for example, Giffler and Thompson (1960) and
French (1982) for a comprehensive overview of classes of schedules. Exam-
ple 2.3.2, which illustrates some of the anomalies of non-delay schedules, is
due to Graham (1966).

The complexity hierarchy of scheduling problems is motivated primarily by
the work of Rinnooy Kan (1976), Lenstra (1977), Lageweg, Lawler, Lenstra
and Rinnooy Kan (1981, 1982) and Lawler, Lenstra, Rinnooy Kan and Shmoys
(1993). For more on reducibility in scheduling, see Timkovsky (2004).
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Single machine models are important for various reasons. The single machine
environment is very simple and a special case of all other environments. Single
machine models often have properties that neither machines in parallel nor ma-
chines in series have. The results that can be obtained for single machine models
not only provide insights into the single machine environment, they also provide
a basis for heuristics that are applicable to more complicated machine environ-
ments. In practice, scheduling problems in more complicated machine environ-
ments are often decomposed into subproblems that deal with single machines.
For example, a complicated machine environment with a single bottleneck may
give rise to a single machine model.

In this chapter various single machine models are analyzed in detail. The
total weighted completion time objective is considered first, followed by several
due date related objectives, including the maximum lateness, the number of
tardy jobs, the total tardiness and the total weighted tardiness. All objective
functions considered in this chapter are regular.

In most models considered in this chapter there is no advantage in having
preemptions; for these models it can be shown that the optimal schedule in the
class of preemptive schedules is nonpreemptive. However, if jobs are released
at different points in time, then it may be advantageous to preempt. If jobs
are released at different points in time in a nonpreemptive environment, then
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it may be advantageous to allow for unforced idleness (i.e., an optimal schedule
may not be non-delay).

3.1 The Total Weighted Completion Time

The first objective to be considered is the total weighted completion time, i.e.,
1|| > w;C;. The weight w; of job j may be regarded as an importance factor;
it may represent either a holding cost per unit time or the value already added
to job j. This problem gives rise to one of the better known rules in scheduling
theory, the so-called Weighted Shortest Processing Time first (WSPT) rule.
According to this rule the jobs are ordered in decreasing order of w; /p,.

Theorem 3.1.1. The WSPT rule is optimal for 1 || > w;C}.

Proof. By contradiction. Suppose a schedule S, that is not WSPT, is optimal.
In this schedule there must be at least two adjacent jobs, say job j followed by
job k, such that

w; Wi

< .

pj Pk
Assume job j starts its processing at time t. Perform a so-called Adjacent Pair-
wise Interchange on jobs j and k. Call the new schedule S’. While under the
original schedule S job j starts its processing at time ¢ and is followed by job k,
under the new schedule 8’ job k starts its processing at time ¢ and is followed
by job j. All other jobs remain in their original position. The total weighted
completion time of the jobs processed before jobs j and k is not affected by
the interchange. Neither is the total weighted completion time of the jobs pro-
cessed after jobs j and k. Thus the difference in the values of the objectives
under schedules S and S’ is due only to jobs j and k (see Figure 3.1). Under S
the total weighted completion time of jobs j and k is

(t +pj)wj + (t + p; erk)wk,

while under &’ it is
(t + pr)wi, + (t + pr + pj)w;.

It is easily verified that if w;/p; < wi/pr the sum of the two weighted comple-
tion times under &’ is strictly less than under S. This contradicts the optimality
of § and completes the proof of the theorem. a

The computation time needed to order the jobs according to WSPT is the
time required to sort the jobs according to the ratio of the two parameters. A
simple sort can be done in O(n log(n)) time, see Example D.1.1 in Appendix D.

How is the minimization of the total weighted completion time affected by
precedence constraints? Consider the simplest form of precedence constraints,
i.e., precedence constraints that take the form of parallel chains (see Figure 3.2).
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Schedule S

é [ ]« ] g
t [+ p;+py

Schedule S’

é [ o« ] 5
t t+p]-+pk

Fig. 3.1 A pairwise interchange of jobs j and k
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O
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Fig. 3.2 Precedence constraints in the form of chains

O

This problem can still be solved by a relatively simple and very efficient (polyno-
mial time) algorithm. This algorithm is based on some fundamental properties
of scheduling with precedence constraints.

Consider two chains of jobs. One chain, say Chain I, consists of jobs 1,...,k
and the other chain, say Chain II, consists of jobs k+ 1,...,n. The precedence
constraints are as follows:

1-2—=---—k

and
k+1—=k+2—=- - —n

The next lemma is based on the assumption that if the scheduler decides to
start processing jobs of one chain he has to complete the entire chain before he
is allowed to work on jobs of the other chain. The question is: if the scheduler
wishes to minimize the total weighted completion time of the n jobs, which one
of the two chains should he process first?

Lemma 3.1.2. If
k n
L wj W,
Zj_l J N (<) Z]_k+1 J

k n . )
Zj:l bj Zj=k+1 Dj
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then it is optimal to process the chain of jobs 1,...,k before (after) the chain
of jobs k+1,....,n.

Proof. By contradiction. Under sequence 1,..., k, k+1,...,n the total weighted
completion time is

k k+1 n
w1p1 +"'+wk2pj+wk+1ZPj+'“+wnZPj>
Jj=1 j=1 j=1

while under sequence k+1,...,n,1,..., kit is

n n n
Wk+1Pk+1 + -+ Wn Z Pj +w1( Z Pj*Pl) +"‘+wkzpj-
j=k+1 j=k+1 Jj=1

The total weighted completion time of the first sequence is less than the total
weighted completion time of the second sequence if

k
Zj:l wy Z?:kJrl wj

k n )
Zj:l pj Zj:k+1 Dj
The result follows. O

An interchange between two adjacent chains of jobs is usually referred to as
an Adjacent Sequence Interchange. Such an interchange is a generalization of
an Adjacent Pairwise Interchange.

An important characteristic of chain

1-2—-.-—k

is defined as follows: let [* satisfy

* l
i Wi . (Zj:l wj)

I* - l :
Zj:ﬂ’j 1si<k Zj:lpj

The ratio on the left-hand side is called the p-factor of chain 1,...,k and is
denoted by p(1,...,k). Job I* is referred to as the job that determines the
p-factor of the chain.

Suppose now that the scheduler does not have to complete all the jobs in
a chain before he is allowed to work on another chain. He may process some
jobs of one chain (while adhering to the precedence constraints), switch over to
another chain, and, at some later point in time, return to the first chain. If, in
the case of multiple chains, the total weighted completion time is the objective
function, then the following result holds.
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Lemma 3.1.3. Ifjobl* determines p(1,...,k), then there exists an optimal
sequence that processes jobs 1,...,1* one after another without any interruption
by jobs from other chains.

Proof. By contradiction. Suppose that under the optimal sequence the process-
ing of the subsequence 1,...,[* is interrupted by a job, say job v, from another
chain. That is, the optimal sequence contains the subsequence 1,...,u,v,u +
1,...,1l*, say subsequence S. It suffices to show that either with subsequence
v, 1,...,1*, say &', or with subsequence 1,...,l* v, say 8", the total weighted
completion time is less than with subsequence S. If it is not less with the
first subsequence, then it has to be less with the second and vice versa. From
Lemma 3.1.2 it follows that if the total weighted completion time with S is less

than with S’ then
Wy < W1 + W 4 ...+ Wy

po prtpet.tpe
From Lemma 3.1.2 it also follows that if the total weighted completion time
with S is less than with §” then
Wy > Wy+1 +wu+2+...+U/l*
Dy Dut1 + Put2 + ... + Pi

If job [* is the job that determines the p-factor of chain 1,...,k, then

Wy+1 + Wyt2 + ... + W= W1 + w4 ...+ Wy
Putl + Put2 + ... + pr= pr+pet...+pu

If S is better than S”, then

w1,>wu+1—|—wu+2+...+wl* W1 + W 4 ...+ Wy
Po Putl +DPut2 + ...+ o PPt A+ pu

So &’ is therefore better than S. The same argument goes through if the inter-
ruption of the chain is caused by more than one job. O

The result in Lemma 3.1.3 is intuitive. The condition of the lemma implies
that the ratios of the weight divided by the processing time of the jobs in the
string 1,...,l" must be increasing in some sense. If one had already decided
to start processing a string of jobs, it makes sense to continue processing the
string until job [* is completed without processing any other job in between.

The two previous lemmas contain the basis for a simple algorithm that mini-
mizes the total weighted completion time when the precedence constraints take
the form of chains.

Algorithm 3.1.4 (Total Weighted Completion Time and Chains)

Whenever the machine is freed, select among the remaining chains the one with
the highest p-factor. Process this chain without interruption up to and including
the job that determines its p-factor. I

The following example illustrates the use of the algorithm.
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Example 3.1.5 (Total Weighted Completion Time and Chains)

Consider the following two chains:
1-2—-3—=4

and
5—56—7

The weights and processing times of the jobs are given in the table below.

jobs 1 2 3 4 5 6 7

w; 618 128 817 18
p; 3 6 65 4 810

The p-factor of the first chain is (6418)/(3+6) and is determined by job 2.
The p-factor of the second chain is (8+17)/(4+48) and is determined by job 6.
As 24/9 is larger than 25/12 jobs 1 and 2 are processed first. The p-factor
of the remaining part of the first chain is 12/6 and determined by job 3. As
25/12 is larger than 12/6 jobs 5 and 6 follow jobs 1 and 2. The p-factor of
the remaining part of the second chain is 18/10 and is determined by job 7;
so job 3 follows job 6. As the w;/p; ratio of job 7 is higher than the ratio of
job 4, job 7 follows job 3 and job 4 goes last. I

Polynomial time algorithms have been obtained for 1 | prec | Y w;C; with
more general precedence constraints than the parallel chains considered above.
However, with arbitrary precedence constraints, the problem is strongly NP-
hard.

Up to now all jobs were assumed to be available at time zero. Consider the
problem where jobs are released at different points in time and the scheduler
is allowed to preempt, i.e., 1 | rj,prmp | > w;C;. The first question that
comes to mind is whether a preemptive version of the WSPT rule is optimal. A
preemptive version of the WSPT rule can be formulated as follows: At any point
in time the available job with the highest ratio of weight to remaining processing
time is selected for processing. The priority level of a job thus increases while
being processed and a job can therefore not be preempted by another job that
already was available at the start of its processing. However, a job may be
preempted by a newly released job with a higher priority factor. Although this
rule may appear a logical extension of the nonpreemptive WSPT rule, it does
not necessarily lead to an optimal schedule since the problem is strongly NP-
hard (see Appendix E).

If all the weights are equal, then the 1 | rj, prmp | > C; problem is easy (see
Exercise 3.15). On the other hand, the nonpreemptive version of this problem,
ie,1|r;|>Cy, is strongly NP-hard.
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In Chapter 2 the total weighted discounted completion time " w; (1 —e "),
with r being the discount factor, is described as an objective that is, in a way,
a generalization of the total weighted (undiscounted) completion time. The
problem 1 || 3> w;(1 — e~"C7) gives rise to a different priority rule, namely the
rule that schedules the jobs in decreasing order of

wje” P
1—e P’

In what follows this rule is referred to as the Weighted Discounted Shortest
Processing Time first (WDSPT) rule.

Theorem 3.1.6. For 1 || Y w;(1 —e~"%) the WDSPT rule is optimal.

Proof. By contradiction. Again, assume that a different schedule, say sched-
ule S, is optimal. Under this schedule there have to be two jobs j and k, job j
followed by job k, such that

wje” P < wge” Pk
l—e P ~1—e"Pr’

Assume job j starts its processing at time t. An Adjacent Pairwise Interchange
between these two jobs results in a schedule §’. Tt is clear that the only difference
in the objective is due to jobs j and k. Under S the contribution of jobs j and
k to the objective function equals

w; (1 _ e—r(t+pj)) T w (1 _ e—r(t+pj+pk)).

The contribution of jobs j and %k to the objective under S’ is obtained by
interchanging the j’s and k’s in this expression. Elementary algebra then shows
that the value of objective function under &’ is less than under S. This leads
to the contradiction that completes the proof. a

As discussed in Chapter 2, the total undiscounted weighted completion time
is basically a limiting case of the total discounted weighted completion time
S w;(1—e~"%). The WDSPT rule results in the same sequence as the WSPT
rule if r is sufficiently close to zero (note that the WDSPT rule is not properly
defined for r = 0).

Both > w;C; and Y w;(1 — e~ "%) are special cases of the more gen-
eral objective function ) w;h(C}). It has been shown that only the functions
h(C;) = C; and h(C;) = 1 — e~ "% lead to simple priority rules that order the
jobs in decreasing order of some function g(wj;,p;). No such priority function
g, that guarantees optimality, exists for any other cost function h. However,
the objective ) h;(C;) can be dealt with via Dynamic Programming (see Ap-
pendix B).

In a similar way as Lemma 3.1.2 generalizes the Adjacent Pairwise Inter-
change argument for WSPT there exists an Adjacent Sequence Interchange
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result that generalizes the Adjacent Pairwise Interchange argument used in the
optimality proof for the WDSPT rule (see Exercise 3.21).

3.2 The Maximum Lateness

The objectives considered in the next four sections are due date related. The
first due date related model is of a rather general nature, namely the problem
1 | prec ‘ hmax, where

[ —— (hl(Cl), o hn(Cn))

with hj, j = 1,...,n, being nondecreasing cost functions. This objective is
clearly due date related as the functions h; may take any one of the forms
depicted in Figure 2.1. This problem allows for an efficient backward dynamic
programming algorithm even when the jobs are subject to arbitrary precedence
constraints.

It is clear that the completion of the last job occurs at the makespan Chax =
> pj, which is independent of the schedule. Let J denote the set of jobs already
scheduled, which are processed during the time interval

[Cmax - ijﬁ Crnax]~

jeJ

The complement of set J, set J¢, denotes the set of jobs still to be scheduled and
the subset J’ of J¢ denotes the set of jobs that can be scheduled immediately
before set J, i.e., the set of jobs all of whose successors are in J. Set J' is referred
to as the set of schedulable jobs. The following backward algorithm yields an
optimal schedule.
Algorithm 3.2.1 (Minimizing Maximum Cost)
Step 1.

Set J=0,Jc={1,...,n}

and J' the set of all jobs with no successors.
Step 2.

Let j* be such that

hy- (3 pi) = min (hy(Y- pu)

keJe keJe

Add §* to J
Delete j7* from J¢
Modify J' to represent the new set of schedulable jobs.
Step 3.
If J¢=0 STOP, otherwise go to Step 2. I
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h(C)

hi(C))

Fig. 3.3 Proof of optimality of Theorem 3.2.2

Theorem 3.2.2.  Algorithm 8.2.1 yields an optimal schedule for 1 | prec |

hmax -

Proof. By contradiction. Suppose in a given iteration job 7**, selected from J’,
does not have the minimum completion cost

hj*( 3 pk)

keJe

among the jobs in J’. The minimum cost job j* must then be scheduled in a
later iteration, implying that job j* has to appear in the sequence before job j**.
A number of jobs may even appear between jobs j* and j** (see Figure 3.3).
To show that this sequence cannot be optimal, take job j* and insert it in
the schedule immediately following job j**. All jobs in the original schedule
between jobs j* and j**, including job j** itself, are now completed earlier.
The only job whose completion cost increases is job j*. However, its completion
cost now is, by definition, smaller than the completion cost of job 7** under the
original schedule, so the maximum completion cost decreases after the insertion
of job j*. This completes the proof. O
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The worst case computation time required by this algorithm can be estab-
lished as follows. There are n steps needed to schedule the n jobs. In each step
at most n jobs have to be considered. The overall running time of the algorithm
is therefore bounded by O(n?).

The following example illustrates the application of this algorithm.

Example 3.2.3 (Minimizing Maximum Cost)
Consider the following three jobs.

jobs 1 2 3

pj 2 3 5
hi(Cy)  1+C1 1.2C, 10

The makespan Crax = 10 and h3(10) < h1(10) < he(10) (as 10 < 11 < 12).
Job 3 is therefore scheduled last and has to start its processing at time 5.
To determine which job is to be processed before job 3, ha(5) has to be
compared with hq(5). Either job 1 or job 2 may be processed before job 3
in an optimal schedule as hi(5) = h2(5) = 6. So two schedules are optimal:
1,2,3 and 2,1, 3. I

The problem 1 || Liax is the best known special case of 1 | prec | hyax. The
function h; is then defined as C; — d; and the algorithm yields the schedule
that orders the job in increasing order of their due dates, i.e., Farliest Due Date
(EDD) first.

A generalization of 1 || Lyax is the problem 1 | rj | Lyax with the jobs
released at different points in time. This generalization, which does not allow
preemption, is significantly harder than the problem with all jobs available at
time 0. The optimal schedule is not necessarily a non-delay schedule. It may be
advantageous to keep the machine idle just before the release of a new job.

Theorem 3.2.4.  The problem 1| rj | Liax is strongly NP-hard.

Proof. The proof is based on the fact that 3-PARTITION reduces to 1 | 7j | Liax-
Given integers a1, ..., ast, b, such that b/4 < a; < b/2 and Zj’tzl a; = tb, the
following instance of 1 | rj | Lmax can be constructed. The number of jobs, n,
is equal to 4t — 1 and

Tj:]b+(‘771)a pj:]-a dj:]b+]7 jzla"'atf]-a
r; =0, Pj = Qj—t+1, dj:tb—‘r(t—l), j=t,..., 4t — 1.

Let z = 0. A schedule with Ly .x < 0 exists if and only if every job j,

j=1,...,t — 1, can be processed between r; and d; = r; + p;. This can be
done if and only if the remaining jobs can be partitioned over the t intervals
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Fig. 3.4 1 | 7; | Lmax is strongly NP-hard

of length b, which can be done if and only if 3-PARTITION has a solution (see
Figure 3.4). O

The 1| rj | Lmax problem is important because it appears often as a subprob-
lem in heuristic procedures for flow shop and job shop problems. It has received
a considerable amount of attention that has resulted in a number of reasonably
effective enumerative branch-and-bound procedures. Branch-and-bound proce-
dures are basically enumeration schemes where certain schedules or classes of
schedules are discarded by showing that the values of the objective obtained
with schedules from this class are larger than a provable lower bound; this
lower bound is greater than or equal to the value of the objective of a schedule
obtained earlier.

A branch-and-bound procedure for 1 | 7; | Lmax can be constructed as fol-
lows. The branching process may be based on the fact that schedules are de-
veloped starting from the beginning of the schedule. There is a single node at
level 0 which is the top of the tree. At this node no job has been put yet into
any position in the sequence. There are n branches going down to n nodes at
level 1. Each node at this level has a specific job put into the first position in the
schedule. So, at each one of these nodes there are still n — 1 jobs whose position
in the schedule has not yet been determined. There are n — 1 arcs emanating
from each node at level 1 to level 2. There are therefore (n — 1) x (n —2) nodes
at level 2. At each node at level 2, the jobs in the first two positions are speci-
fied; at level k, the jobs in the first k positions are specified. Actually, it is not
necessary to consider every remaining job as a candidate for the next position.
If at a node at level k — 1 jobs ji,...,jx_1 are scheduled as the first k£ — 1 jobs,
then job ji only has to be considered if

T3 < min (maX(t, ) + pz),

where J denotes the set of jobs not yet scheduled and ¢ denotes the time job jy
is supposed to start. The reason for this condition is clear: if job jx does not
satisfy this inequality, then selecting the job that minimizes the right-hand side
instead of ji does not increase the value of L.x. The branching rule is thus
fairly easy.

There are several ways in which bounds for nodes can be obtained. An easy
lower bound for a node at level £k — 1 can be established by scheduling the
remaining jobs J according to the preemptive EDD rule. The preemptive EDD
rule is known to be optimal for 1 | rj,prmp | Lmax (see Exercise 3.24) and
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Level 0

bound =5 revel!

bg:l(;‘ze:r ] Level 2
Value of objective Level 3

function is 5

Fig. 3.5 Branch-and-bound procedure for Example 3.2.5

thus provides a lower bound for the problem at hand. If a preemptive EDD rule
results in a nonpreemptive schedule, then all nodes with a higher lower bound
may be disregarded.

Example 3.2.5 (Branch-and-Bound for Minimizing Maximum
Lateness)

Consider the following 4 jobs.

jobs 1 2 3 4
p; 4 2 6 5
r; 0 1 3 5
d; 812 11 10

At level 1 of the search tree there are four nodes: (1,x,3%*,x), (2,x*,%,%),
(3, %, %,%) and (4, *, x, *). It is easy to see that nodes (3, *, ¥, ) and (4, x, *, x)
may be disregarded immediately. Job 3 is released at time 3; if job 2 would
start its processing at time 1, job 3 still can start at time 3. Job 4 is released
at time 5; if job 1 would start its processing at time 0, job 4 still can start
at time 5 (see Figure 3.5).
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Computing a lower bound for node (1, %, %, *) according to the preemptive
EDD rule results in a schedule where job 3 is processed during the time
interval [4,5], job 4 during the time interval [5,10], job 3 (again) during
interval [10,15] and job 2 during interval [15,17]. The Lyax of this schedule,
which provides a lower bound for node (1, x,*,x), is 5. In a similar way a
lower bound can be obtained for node (2,x*,*,*). The value of this lower
bound is 7.

Consider node (1,2, %, %) at level 2. The lower bound for this node is 6
and is determined by the (nonpreemptive) schedule 1,2,4, 3. Proceed with
node (1,3,%,x%) at level 2. The lower bound is 5 and determined by the
(nonpreemptive) schedule 1,3,4,2. From the fact that the lower bound for
node (1, *, x,*) is 5 and the lower bound for node (2, *, *, %) is larger than 5
it follows that schedule 1, 3, 4,2 has to be optimal. Il

The problem 1 | rj, prec | Limax can be handled in a similar way. This prob-
lem, from an enumeration point of view, is easier than the problem without
precedence constraints, since the precedence constraints allow certain schedules
to be ruled out immediately.

3.3 The Number of Tardy Jobs

Another due date related objective is ) U;. This objective may at first appear
somewhat artificial and of no practical interest. However, in the real world it is a
performance measure that is often monitored and according to which managers
are being measured. It is equivalent to the percentage of on time shipments.

An optimal schedule for 1 || > U; takes the form of one set of jobs that
will meet their due dates and that are scheduled first followed by the set of
remaining jobs that will not meet their due dates and that are scheduled last.
It follows from the results in the previous section that the first set of jobs have
to be scheduled according to EDD in order to make sure that L.« is negative;
the order in which the second set of jobs is scheduled is immaterial.

The problem 1 || > U; can be solved easily using a forward algorithm. Re-
order the jobs in such a way that d; < dy < --- < d,,. The algorithm goes
through n iterations. In iteration k of the algorithm jobs 1,2,... %k are taken
into consideration. Of these k jobs, the subset J refers to jobs that, in an opti-
mal schedule, may be completed before their due dates and the subset J¢ refers
to jobs that already have been discarded and will not meet their due dates in
the optimal schedule. In iteration k the set J¢ refers to jobs k+ 1,k +2,...,n.

Algorithm 3.3.1 (Minimizing Number of Tardy Jobs)
Step 1.

Set J =10, J¢={1,...,n}, and J* = 0.
Set the counter k = 1.
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Step 2.

Add job k to J.
Delete job k from J€.

Go to Step 3.
Step 3.
If
ij < d,
jeJ
go to Step 4.

Otherwise, let £ denote the job that satisfies
pe = max (p;).

Delete job { from J.
Add job £ to J<.

Step 4.
Set J, = J.
If k=n STOP,

otherwise set k = k+1 and go to Step 2. I

In words the algorithm can be described as follows. Jobs are added to the
set of on-time jobs in increasing order of their due dates. If including job & to
the set of scheduled jobs implies that job k& would be completed late, then the
scheduled job with the longest processing time, say job ¢, is marked late and
discarded. Since the algorithm basically orders the jobs according to their due
dates, the worst case computation time is that of a simple sort, i.e., O(n log(n)).

Note that the algorithm creates in its last step n job sets Jy, ..., J,. Set Ji
is a subset of jobs {1,...,k}, consisting of those jobs that are candidates for
meeting their due dates in the final optimal schedule. Set .J,, consists of all jobs
that meet their due dates in the optimal schedule generated.

Theorem 3.3.2.  Algorithm 3.3.1 yields an optimal schedule for 1 || > Uj.

Proof. The proof uses the following notation and terminology. A job set J is
called feasible if the jobs, scheduled according to EDD, all meet their due dates.
A job set J is called [—optimal if it is a feasible subset of jobs 1,...,[ and if it
has, among all feasible subsets of jobs 1,...,[, the maximum number of jobs.

The proof consists of three steps. The first step of the proof shows that the
job sets Ji,...,J, created in Step 4 of the algorithm are all feasible. This can
be shown by induction (see Exercise 3.27).

The second step of the proof shows that for [ > k, there exists an [—optimal
set that consists of a subset of jobs J; and a subset of jobs £+ 1,...,1. To
show this, assume it is true for k — 1, i.e., there exists an [—optimal set J’ that
consists of a subset of jobs from set Jx_1 and a subset of jobs k,k+1,...,1.
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It can be shown that an [—optimal set J” can be created from J; and jobs
k+1,...,1 by considering three cases:

Case 1: Set Jy, consists of set J,_1 plus job k. In order to create set J”, just
take set J'.

Case 2: Set Ji consists of set Ji_1 plus job k minus some job ¢ which is not
an element of set .J'. Again, in order to create set J”, just take set J'.

Case 3: Set Jy is equal to set Jp_; plus job k& minus some job ¢ which is
an element of set J'. The argument is now a little bit more complicated. Since
Jr_1 plus k is not a feasible set, there must exist in the set that comprises Ji_1
and k a job r that is not an element of J'. Take any such r. Now, to create set
J", take set J’, include job r and delete job q. Clearly, set J” is a subset of
set Ji and jobs k+1,...,n. Since the number of jobs in J” is the same as the
number of jobs in J’, it only remains to be shown that J” is feasible. Since J”
differs from J’ only in its intersection with jobs {1,...,k}, it suffices to verify
two properties, namely that the job set which is the intersection of set J” and
set {1,...,k} is feasible and that the total processing time of the jobs in the
intersection of J” and {1,...,k} is less than or equal to the total processing
time of the jobs in the intersection of J’ and {1,...,k}. The feasibility of the
intersection of J” and set {1,...,k} follows from the fact that it is a subset
of Ji, which is feasible because of the first step of the proof. The second property
follows from the fact that p, < p,.

The third and final step of the proof shows that set J, is k—optimal for
k=1,...,n. It is clearly true for k = 0 and k = 1. Suppose it is true for k — 1.
From the previous step it follows that the set that comprises Ji_1 and k must
contain a k—optimal set. If set Jj, contains the entire set Jx_1 plus job k then it
must clearly be k—optimal since Jx_1 is (k — 1)-optimal. If set Jx_1 combined
with job k is not feasible, then the k—optimal set must be a smaller set within
the set that contains Jx_1 and k; however, it must contain at least as many
jobs as set Jyx_1. Set Ji clearly satisfies this condition. O

Example 3.3.3 (Minimizing Number of Tardy Jobs)
Consider the following 5 jobs.

jobs 1 2 3 4 5

p; 7 8 4 6 6
d; 917 18 19 21

Jobs 1 and 2 can be positioned first and second in the sequence with both
jobs being completed on time. Putting job 3 into the third position causes
problems. Its completion time would be 19 while its due date is 18. Algo-
rithm 3.3.1 prescribes the deletion of the job with the longest processing time
among the first three jobs. Job 2 is therefore deleted and jobs 1 and 3 remain
in the first two positions. If now job 4 follows job 3, it is completed on time at
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17; however, if job 5 follows job 4, it is completed late. The algorithm then
prescribes to delete the job with the longest processing time among those
already scheduled, which is job 1. So the optimal schedule is 3,4, 5, 1,2 with

2.Uj =2 |

Note that Algorithm 3.3.1 is an algorithm that goes forward in time. For this
problem there is not any algorithm that goes backward in time. Note also that
there may be many optimal schedules; characterizing the class of all optimal
schedules seems to be a very difficult problem.

The generalization of this problem with weights, i.e., 1 || >_ w;U; is known to
be NP-hard (see Appendix D). The special case with all due dates being equal
is equivalent to the so-called knapsack problem. The due date is equivalent to
the size of the knapsack, the processing times of the jobs are equivalent to the
sizes of the items and the weights are equivalent to the benefits obtained by
putting the items into the knapsack. A popular heuristic for this problem is the
WSPT rule which sequences the jobs in decreasing order of w;/p;. A worst case
analysis shows that this heuristic may perform arbitrarily badly, i.e., that the
ratio

>_w;U;(OPT)

may be arbitrarily large.

Example 3.3.4 (The WSPT Rule and a Knapsack)
Consider the following three jobs.

jobs 1 2 3

p; 11 9 90
w; 12 9 89
d; 100 100 100

Scheduling the jobs according to WSPT results in the schedule 1,2,3. The
third job is completed late and > w;U;(WSPT) is 89. Scheduling the jobs
according to 2,3, 1 results in > w;U;(OPT) being equal to 12. I

3.4 The Total Tardiness - Dynamic Programming

The objective > Tj is one that is important in practice as well. Minimizing the
number of tardy jobs, Y Uj, in practice cannot be the only objective to measure
how due dates are being met. Some jobs may have to wait for an unacceptably
long time if the number of late jobs is minimized. If instead the sum of the
tardinesses is minimized it is less likely that the wait of any given job will be
unacceptably long.
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The model 1 || > 7} has received an enormous amount of attention in the
literature. For many years its computational complexity remained open, until
its NP-hardness was established in 1990. As 1 || YT, is NP-hard in the ordi-
nary sense it allows for a pseudo-polynomial time algorithm based on dynamic
programming (see Appendix D). The algorithm is based on two preliminary
results.

Lemma 3.4.1. Ifp; < pr and d; < di, then there exists an optimal
sequence in which job j is scheduled before job k.

Proof. The proof of this result is left as an exercise. O

This type of result is useful when an algorithm has to be developed for
a problem that is NP-hard. Such a result, often referred to as a Dominance
Result or Elimination Criterion, often allows one to disregard a fairly large
number of sequences. Such a dominance result may also be thought of as a set
of precedence constraints on the jobs. The more precedence constraints created
through such dominance results, the easier the problem becomes.

In the following lemma the sensitivity of an optimal sequence to the due
dates is considered. Two problem instances are considered, both of which
have n jobs with processing times p1,...,p,. The first instance has due dates
di,...,dy. Let C}, be the latest possible completion time of job k in any op-
timal sequence, say &', for this instance. The second instance has due dates
di,...,dk—1,max(dg,C}),di+1,...,dn. Let S” denote the optimal sequence
with respect to this second set of due dates and C]’-’ the completion of job j
under this second sequence.

Lemma 3.4.2. Any sequence that is optimal for the second instance is also
optimal for the first instance.

Proof. Let V'(S) denote the total tardiness under an arbitrary sequence S with
respect to the first set of due dates and let V" (S) denote the total tardiness
under sequence S with respect to the second set of due dates. Now

V,(S/):VH(S/)“FA]C

and
V/(s//) — V//(s//) +Bk;7

where, if C}, < di the two sets of due dates are the same and the sequence
that is optimal for the second set is therefore also optimal for the first set. If
C}. > dy, then
A = Cp, —dy,
and
By, = max(0, min(Cy}, C.) — di)

It is clear that Ay > Bg. As 8" is optimal for the second instance V"' (S’)

>
V"(8"). Therefore V'(S") > V'(S"”) which completes the proof. |
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In the remainder of this section it is assumed for purposes of exposition
that (without loss of generality) all processing times are different, if neces-
sary after an infinitesimal perturbation. Assume that d; < --- < d,, and
pr = max(p1,...,pn). That is, the job with the kth smallest due date has
the longest processing time. From Lemma 3.4.1 it follows that there exists an
optimal sequence in which jobs {1,...,k — 1} all appear, in some order, before
job k. Of the remaining n — k jobs, i.e., jobs {k + 1,...,n}, some may appear
before job k and some may appear after job k. The subsequent lemma focuses
on these n — k jobs.

Lemma 3.4.3. There exists an integer §, 0 < § < n — k, such that there
is an optimal sequence S in which job k is preceded by all jobs j with j < k+ 6
and followed by all jobs j with j > k+ 0.

Proof. Let Cj. denote the latest possible completion time of job k in any se-
quence that is optimal with respect to the given due dates d1,...,d,. Let S” be a
sequence that is optimal with respect to the due dates dy, . . ., dy—1, max(C},, d,),
dik+1,-..,d, and that satisfies the condition stated in Lemma 3.4.1. Let C}/
denote the completion time of job k£ under this sequence. By Lemma 3.4.2 se-
quence 8" is also optimal with respect to the original due dates. This implies
that C}/ < max(C},d). One can assume that job k is not preceded in S8” by
a job with a due date later than max(C},, di) (if this would have been the case
this job would be on time and repositioning this job by inserting it immedi-
ately after job k& would not increase the objective function). Also, job k has to
be preceded by all jobs with a due date earlier than max(C},,dy) (otherwise
Lemma 3.4.1 would be violated). So § can be chosen to be the largest integer
such that diys < max(CY,d). This completes the proof. O

In the dynamic programming algorithm a subroutine is required that gener-
ates an optimal schedule for the set of jobs 1,...,[ starting with the processing
of this set at time ¢. Let k be the job with the longest processing time among
these [ jobs. From Lemma 3.4.3 it follows that for some ¢ (0 < & <1 — k) there
exists an optimal sequence starting at ¢ which may be regarded as a concate-
nation of three subsets of jobs, namely

(i) jobs 1,2,...,k—1,k+1,...,k + ¢ in some order, followed by
(ii) job k, followed by
(iii) jobs k+d+ 1,k + 6 +2,...,1 in some order.

The completion time of job k, Ck(d), is given by

Crl(d)= Y pj.

j<k+s

It is clear that for the entire sequence to be optimal the first and third sub-
sets must be optimally sequenced within themselves. This suggests a dynamic
programming procedure that determines an optimal sequence for a larger set of
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jobs after having determined optimal sequences for proper subsets of the larger
set. The subsets J used in this recursive procedure are of a very special type.
A subset consists of all the jobs in a set {j,j7 4+ 1,...,0 — 1,1} with processing
times smaller than the processing time pj of job k. Such a subset is denoted
by J(j,1, k). Let V(J(4,1,k),t) denote the total tardiness of this subset under
an optimal sequence, assuming that this subset starts at time ¢. The dynamic
programming procedure can now be stated as follows.

Algorithm 3.4.4 (Minimizing Total Tardiness)

Initial Conditions

V(Qat) =0,
V({{j},t) = max(0,t + p; — d;).

Recursive Relation

V(G0 k),8) = min (VG K +6,K),1) + max(0, Cu(8) — di)

+ V(I +5+1,1,K), Ck’(a)))

where k' is such that
Prr = Inax (pj’ ‘ j/ € J(]ala k))

Optimal Value Function

V({{1,...,n},0). I

The optimal ) T value is given by V' ({1,...,n},0). The worst case compu-
tation time required by this algorithm can be established as follows. There are
at most O(n?) subsets J(j,1, k) and " p; points in time ¢. There are therefore at
most O(n® " p;) recursive equations to be solved in the dynamic programming
algorithm. As each recursive equation takes O(n) time, the overall running time
of the algorithm is bounded by O(n* 3" p;), which is clearly polynomial in n.
However, because of the term ) p; it qualifies only as a pseudopolynomial time
algorithm.

Example 3.4.5 (Minimizing Total Tardiness)
Consider the following 5 jobs.

jobs 1 2 3 4 5

Dj 121 79 147 83 130
d; 260 266 266 336 337
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The job with the largest processing time is job 3. So 0 < § < 2. The recursive
equation yields:

V(J(1,3,3),0) + 81 + V(J(4,5,3),347)
V({1,2,...,5},0) = min{ V(J(1,4,3),0)+ 164+ V(J(5,5,3),430)
V(J(1,5,3),0) + 294 + V (0, 560)

The optimal sequences of the smaller sets can be determined easily. Clearly,
V(J(1,3,3),0) is zero and there are two sequences that yield zero: 1,2 and
2,1. The value of

V(J(4,5,3),347) = 94 + 223 = 317
and this is achieved with sequence 4, 5. Also
V(J(1,4,3),0) = 0.

This value is achieved with the sequences 1,2,4 and 2,1,4. The value of
V(J(5,5,3),430) is equal to 560 minus 337 which is 223. Finally,

V(J(1,5,3),0) = 76.
This value is achieved with sequences 1,2,4,5 and 2,1,4, 5.

0+ 81+ 317
V({1,2,...,5},0) = min{ 0+ 164+ 223 % = 370.
76+ 294 4 0

Two optimal sequences are 1,2,4,5,3 and 2,1,4,5, 3. I

The 1 || Y- 7} problem can also be solved with a branch-and-bound pro-
cedure. As this branch-and-bound procedure can also be applied to the more
general problem with arbitrary weights, it is presented in Section 3.6.

3.5 The Total Tardiness - An Approximation Scheme

Since 1 || 3 T; is NP-hard, neither branch-and-bound nor dynamic program-
ming can yield an optimal solution in polynomial time. It may therefore be of
interest to have an algorithm that yields, in polynomial time, a solution that is
close to optimal.

An approximation scheme A is called fully polynomial if the value of the
objective it achieves, say Y T;(A), satisfies

Y Ti(4) < (1+€ ) T;(OPT),
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where > T;(OPT) is the value of the objective under an optimal schedule.
Moreover, for the approximation scheme to be fully polynomial its worst case
running time has to be bounded by a polynomial of a fixed degree in n and
in 1/e. The remainder of this section discusses how the dynamic programming
algorithm described in the previous section can be used to construct a Fully
Polynomial Time Approximation Scheme (FPTAS).

It can be shown that a given set of n jobs can only be scheduled with zero
total tardiness if and only if the EDD schedule results in a zero total tardi-
ness. Let )" T;(EDD) denote the total tardiness under the EDD sequence and
Tmax(EDD) the maximum tardiness, i.e., max(71,...,T,), under the EDD se-
quence. Clearly,

Tmax(EDD) < Y T;(OPT) < Y T;(EDD) < nTya(EDD).

Let V(J,t) denote the minimum total tardiness of the subset of jobs .J, which
starts processing at time t. For any given subset J, a time ¢* can be computed
such that V(J,¢) = 0 for ¢t < ¢*, and V(J,t) > 0 for ¢ > ¢t*. Moreover, it can be
shown easily that

V(J,t* +0) >4,

for § > 0. So in executing the pseudopolynomial dynamic programming algo-
rithm described before, one only has to compute V' (J,t) for

t* < t < nTwax(EDD).

Substituting > p; in the overall running time of the dynamic programming algo-
rithm by nTiax(EDD) yields a new running time bound of O(n®Tiax(EDD)).
Now replace the given processing times p; by the rescaled processing times

p; = pi/ K],

where K is a suitable chosen scaling factor. (This implies that p;- is the largest
integer that is smaller than or equal to p;/K.) Replace the due dates d; by new
due dates

d;- =d;/K

(but without rounding). Consider an optimal sequence with respect to the
rescaled processing times and the rescaled due dates and call this sequence S.
This sequence can be obtained within the time bound O(n®Timax(EDD)/K).

Let ) T7(S) denote the total tardiness under sequence S with respect to
the processing times Kp) and the original due dates and let 7}(S) denote
the total tardiness with respect to the original processing times p; (which may
be slightly larger than K'p’;) and the original due dates. From the fact that

Kp; <p; < K(p; +1),
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it follows that

ZTJ%(s) < ZT]»(OPT) < ZTJ'(S) < ZTJ%(S)JFK(n(n; 1))'

From this chain of inequalities it follows that

S 13(8) - ST (0PT) < K(”(”; 1)).

Recall that the goal is for S to satisfy

D Ti(S) =Y T;(OPT) < e > T;(OPT).
If K is chosen such that

K= (n(fi ) )Tmax(EDD>7

then the stronger result
> T5(8) = > Tj(OPT) < € Tonax(EDD)

is obtained. Moreover, for this choice of K the time bound O(n°Tin.x(EDD)/K)
becomes O(n”/¢), making the approximation scheme fully polynomial.

This Fully Polynomial Time Approximation Scheme can be summarized as
follows:

Algorithm 3.5.1 (FPTAS for Minimizing Total Tardiness)

Step 1.

Apply EDD and determine Trax.-
If Tmax = 0, then Y T; = 0 and EDD is optimal; STOP.
Otherwise set

K= (n( 2 >)Tmax(EDD).

n+1
Step 2.
Rescale processing times and due dates as follows:
p; =L pi/K],
d;- =d;/K.
Step 3.

Apply Algorithm 3.4.4 to the rescaled data. I

The sequence generated by this algorithm, say sequence S, satisfies

D Ti(S) < (1+€)> T;(OPT).
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The following example illustrates the approximation scheme.

Example 3.5.2. (FPTAS Minimizing Total Tardiness)

Consider a single machine and 5 jobs.

jobs 1 2 3 4 5

Dj 1210 790 1470 830 1300
d; 1996 2000 2660 3360 3370

It can be verified (via dynamic programming) that the optimal sequence is
1,2,4,5,3, and that the total tardiness under this optimal sequence is 3700.

Applying EDD yields Tyax(EDD) = 2230. If € is chosen 0.02, then K =
2.973. The rescaled data are:

jobs 1 2 3 4 )

Dj 406 265 494 279 437
d; 671.38 672.72 894.72 1130.17 1133.54

Solving this instance using the dynamic programming procedure described
in Section 3.4 yields two optimal sequences: 1,2,4,5,3 and 2,1,4,5,3. If se-
quence 2,1,4,5.3 is applied to the original data set, then the total tardiness
is 3704. Clearly,

> T5(2,1,4,5,3) < (1.02) Y T5(1,2,4,5,3). I

3.6 The Total Weighted Tardiness

The problem 1 || >~ w;T} is an important generalization of the 1 || > T; prob-
lem discussed in the previous sections. Dozens of researchers have worked on
this problem and have experimented with many different approaches. The ap-
proaches range from very sophisticated computer intensive techniques to fairly
crude heuristics designed primarily for implementation in practice.

The dynamic programming algorithm for 1 || > T; described in the previous
section can also deal with agreeable weights, that is, p; > pr = w; < wy.
Lemma 3.4.1 can be generalized to this case as follows:

Lemma 3.6.1. If there are two jobs j and k with d; < d, p; < pr and
wj > wy, then there is an optimal sequence in which job j appears before job k.
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[ [ ] N [ ] |

0 b+1 2b+2 (t=-2)b+t-2 t-1Db+t-1 th+t-1

Fig. 3.6 3-PARTITION reduces to 1 || > w;T}

Proof. The proof is based on a (not necessarily adjacent) pairwise interchange
argument. O

Unfortunately, no efficient algorithm can be obtained for 1 || ) w;T; with
arbitrary weights.

Theorem 3.6.2.  The problem 1 || >~ w;Tj is strongly NP-hard.

Proof. The proof is done again by reducing 3-PARTITION to 1 || > w;T;. The
reduction is based on the following transformation. Again, the number of jobs,
n, is chosen to be equal to 4t — 1 and

dJ:O7 p]:aj7 wj:aj7 j:17...73t7
dJ:(J_gt)(b+1)7 pj:L wj:27 ]:3t+1774t_1

Let 1
z= Z ajay + 2(t — 1)tb.

1<j<k<3t

It can be shown that there exists a schedule with an objective value z if and
only if there exists a solution for the 3-PARTITION problem. The first 3t jobs
have a w;/p; ratio equal to 1 and are due at time 0. There are ¢t — 1 jobs with
w;/p; ratio equal to 2 and their due dates are at b+ 1, 2b+ 2, and so on. A
solution with value z can be obtained if these ¢t — 1 jobs can be processed exactly
during the intervals

b, b+1], [204+1,204+2], ..., [(t—=1Db+t—2, (t—1)b+t—1]

(see Figure 3.6). In order to fit these ¢t — 1 jobs in these ¢t — 1 intervals, the first
3t jobs have to be partitioned into t subsets of three jobs each with the sum
of the three processing times in each subset being equal to b. It can be verified
that in this case the sum of the weighted tardinesses is equal to z.

If such a partition is not possible, then there is at least one subset of which
the sum of the three processing times is larger than b and one other subset of
which the sum of the three processing times is smaller than b. It can be verified
that in this case the sum of the weighted tardinesses is larger than z. a

Usually a branch-and-bound approach is used for 1 || >~ w;T;. Most often,
schedules are constructed starting from the end, i.e., backwards in time. At the
jth level of the search tree, jobs are put into the (n— j + 1)th position. So from
each node at level j — 1 there are n — j 4 1 branches going to level j. It may not
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be necessary to evaluate all possible nodes. Dominance results such as the one
described in Lemma 3.6.1 may eliminate a number of nodes. The upper bound
on the number of nodes at level j is n!/(n—j)! The argument for constructing
the sequence backwards is that the larger terms in the objective function are
likely to correspond to jobs that are positioned more towards the end of the
schedule. It appears to be advantageous to schedule these ones first.

There are many different bounding techniques. One of the more elementary
bounding techniques is based on a relazation of the problem to a transportation
problem. In this procedure each job j with (integer) processing time p; is divided
into p; jobs, each with unit processing time. The decision variables xj;, is 1 if
one unit of job j is processed during the time interval [k — 1, k] and 0 otherwise.
These decision variables x;, must satisfy two sets of constraints:

Crnax
Tjk = Pj, j=1,...,n
k=1
n
E Tk = 1, k=1,...,Chax-
j=1

Clearly, a solution satisfying these constraints does not guarantee a feasible
schedule without preemptions. Define cost coefficients c;j, that satisfy

l

Z ¢k < wjmax(l —dj,0)
k=l—p;+1

forj=1,...,n; I=1,...,Chax- Then the minimum cost solution provides a
lower bound, since for any solution of the transportation problem with x;; =1
for k= C; —p; +1,...,C; the following holds

Crmax Cj
E CikTjk = E Cik S wy max(Cj - dj, O)
k=1 k‘:ijijrl

It is fairly easy to find cost functions that satisfy this relationship. For example,
set

o — 0, for k < d;

k= wj, for k > d;.
The solution of the transportation problem provides a lower bound for 1 ||
>~ w;T;. This bounding technique is applied to the set of unscheduled jobs at

each node of the tree. If the lower bound is larger than the solution of any
known schedule, then the node may be eliminated.

Example 3.6.3 (Minimizing Total Weighted Tardiness)
Consider the following 4 jobs.
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Lower bound = 65 Lower bound = 112

Value of
objective function is 67

Fig. 3.7 Branch-and-bound procedure for Example 3.5.3

jobs 1 2 3 4
wj 4 5 3 5
p; 12 815 9
d; 16 26 25 27

From Lemma 3.6.1 it immediately follows that in an optimal sequence job 4
follows job 2 and job 3 follows job 1. The branch-and-bound tree is con-
structed backwards in time. Only two jobs have to be considered as candi-
dates for the last position, namely jobs 3 and 4. The nodes of the branch-and-
bound tree that need to be investigated are depicted in Figure 3.7. To select
a branch to search first, bounds are determined for both nodes at level 1.

A lower bound for an optimal sequence among the offspring of node
(%,%,%,4) can be obtained by considering the transportation problem de-
scribed before applied to jobs 1, 2 and 3. The cost functions are chosen as
follows

cie =0, k=1,...,16

cp =4, k=17,...,35
Cgk:(), k:].,...,26
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Cop = 9, k=27,...,35
c3k =0, k=1,...,25
c3k = 3, k=26,...,35

The optimal allocation of job segments to time slots puts job 1 in the first
12 slots, job 2 into slots 19 to 26 and job 3 in slots 13 to 18 and 27 to 35
(this optimal solution can be found by solving a transportation problem but
can, of course, also be found by trial and error). The cost of this allocation
of the three jobs is 3 x 9 (the cost of allocating job 3 to slots 27 to 35). In
order to obtain a lower bound for the node the tardiness of job 4 has to be
added; this results in the lower bound 27 + 80 which equals 107.

In a similar fashion a lower bound can be obtained for node (x, *,*,3). A
lower bound for an optimal schedule for jobs 1, 2 and 4 yields 8, while the
tardiness of job 3 is 54 resulting in a bound of 62.

As node (%, *,*,3) appears to be the more promising node, the offspring
of this node is considered first. It turns out that the best schedule reachable
from this node is 1,2, 4,3 with an objective value of 64.

From the fact that the lower bound for (x,%,x*,4) is 107 it follows that
1,2,4, 3 is the best overall schedule. I

There are many heuristic procedures for this problem. Chapter 14 describes a
composite dispatching rule, the so-called Apparent Tardiness Cost (ATC) rule,
in detail.

3.7 Discussion

All the models considered in this chapter have regular objective functions. This
is one of the reasons why most of the models are relatively easy.

Some are solvable via simple priority (dispatching) rules, e.g., WSPT, EDD.
Most of the models that are not solvable via simple priority rules, are still
solvable either in polynomial time or in pseudo-polynomial time. The models
that are solvable in polynomial time are usually dealt with through dynamic
programming, e.g., 1 | prec | Amax, 11| >.7}.

One of the strongly NP-hard problems considered in this chapter is 1 ||
>~ w;T;. This problem has received an enormous amount of attention in the
literature. There are two approaches for obtaining optimal solutions, namely
branch-and-bound, and dynamic programming. Section 3.6 presents a branch-
and-bound approach, while Appendix B describes a dynamic programming ap-
proach that can be applied to the more general problem 1 || >~ h;(C;).

This chapter has also shown an application of a Fully Polynomial Time Ap-
proximation Scheme (FPTAS) for a single machine scheduling problem. Over
the last decade Polynomial Time Approximation Schemes (PTAS) and Fully
Polynomial Time Approximation Schemes (FPTAS) have received an enormous
amount of attention. Most of this attention has focused on NP-hard problems
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that are close to the boundaries separating NP-hard problems from polynomial
time problems, e.g., 1 |r; | Y C;.

Most of the problems described in this chapter can be formulated as Mixed
Integer Programs (MIPs). Mixed Integer Programming formulations of several
single machine scheduling problems are presented in Appendix A. This appendix
gives also an overview of the techniques that can be applied to MIPs.

This chapter does not exhibit all the possible procedures and techniques that
can be brought to bear on single machine scheduling problems. One important
class of solution procedures is often referred to as constraint programming.
Appendix C gives a detailed description of this class of procedures and Chapter
15 provides an example of a constraint programming procedure that can be
applied to 1 | r; | > w;Uj.

Many heuristic procedures have been developed that can be applied to single
machine scheduling problems. These procedures include the so-called composite
dispatching rules as well as local search techniques. Chapter 14 provides an in-
depth overview of these techniques and their applications to single machine
problems.

The next chapter considers more general and more complicated single ma-
chine problems. It focuses on problems with non-regular objective functions and
on problems with multiple objective functions.

Exercises (Computational)

3.1. Consider 1 || Y~ w;C; with the following weights and processing times.

jobs 1 2 3 45 6 7

w;, 0 18 12 8 8 17 16
p; 3 6 654 8 9

(a) Find all optimal sequences.

(b) Determine the effect of a change in py from 6 to 7 on the optimal
sequence(s).

(¢) Determine the effect of the change under (b) on the value of the objec-
tive.

3.2. Consider 1 | chains | > w;C; with the same set of jobs as in Exercise
3.1.(a). The jobs are now subject to precedence constraints which take the form
of chains:

1 = 2

3 >4 —>5
6 — 7

Find all optimal sequences.
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3.3. Consider 1 || > w;(1—e~"%) with the same set of jobs as in Exercise 3.1.

(a) Assume the discount rate r is 0.05. Find the optimal sequence. Is it
unique?
(b) Assume the discount rate r is 0.5. Does the optimal sequence change?

3.4. Find all optimal sequences for the instance of 1 || hyax with the following
jobs.

jobs 1 2 3 4 5 6 7

»; 48 12 7 6 9 9
hJ(CJ) 3Cy 7 Cg 1.5Cy 70 —|-\/C5 1.6Cs 1.4C,

3.5. Consider 1 | prec | hmax with the same set of jobs as in Exercise 3.4 and
the following precedence constraints.

1 -7 —>6

5 = 7
5 — 4
Find the optimal sequence.

3.6. Solve by branch-and-bound the following instance of the 1 | r; | Lmax
problem.

jobs 1 2 3 4 5 6 7

6 18 12 10 10 17 16
r; 0 0 0 14 25 25 50
8 42 44 24 90 85 68

3.7. Consider the same problem as in the previous exercise. However, now the
jobs are subject to the following precedence constraints.

2 -1 — 4

6 — 7
Find the optimal sequence.

3.8. Find the optimal sequence for the following instance of the 1 || > T;
problem.

jobs 1 2 3 4 5 6 7 8

p; 6181210 10 11 5 7
dj 8 42 44 24 26 26 70 75
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Hint: Before applying the dynamic programming algorithm, consider first the
elimination criterion in Lemma 3.4.1.

3.9. Consider a single machine and 6 jobs.

jobs 1 2 3 4 5 6

p; 1190 810 1565 719 1290 482
d; 1996 2000 2660 3360 3370 3375

Apply the FPTAS described in Section 3.5 to this instance with ¢ = 0.02. Are
all sequences that are optimal for the rescaled data set also optimal for the
original data set?

3.10. Find the optimal sequence for the following instance of the 1 || Y w;T;
problem.

jobs 1 2 3 4 5 6 7

6 18 12 10 10 17 16
w; 1 5 2 4 1 4 2
8 42 44 24 90 85 68

Exercises (Theory)

3.11. Consider 1 || Y w;(1—e"%). Assume that w;/p; # wy/py. for all j and
k. Show that for r sufficiently close to zero the optimal sequence is WSPT.

3.12. Show that if all jobs have equal weights, i.e., w; = 1 for all j, the WDSPT
rule is equivalent to the Shortest Processing Time first (SPT) rule for any r,
0<r<l.

3.13. Consider the problem 1 | prmp | > h;(C;). Show that if the functions
h; are nondecreasing there exists an optimal schedule that is nonpreemptive.
Does the result continue to hold for arbitrary functions h;?

3.14. Consider the problem 1| r; | > C;.

(a) Show through a counterexample that the nonpreemptive rule that se-
lects, whenever a machine is freed, the shortest job among those available
for processing is not always optimal. In part (b) and (c) this rule is referred
to as SPT™.

(b) Perform a worst case analysis of the SPT* rule, i.e., determine the
maximum possible value of the ratio )" C;(SPT*)/ > C;(OPT).
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(c) Design a heuristic for 1| r; | C; that performs better than SPT*.

3.15. Consider the problem 1 | r;,prmp | >_ C;. Show that the preemptive
Shortest Remaining Processing Time first (SRPT) rule is optimal.

3.16. Consider the problem 1 | prmp | > C; with the additional restriction
that job j has to be completed by a hard deadline d;. Assuming that there are
feasible schedules, give an algorithm that minimizes the total completion time
and prove that it leads to optimality.

3.17. Consider the following preemptive version of the WSPT rule: if p;(¢)
denotes the remaining processing time of job j at time ¢, then a preemptive
version of the WSPT rule puts at every point in time the job with the highest
w;/p;(t) ratio on the machine. Show, through a counterexample, that this rule
is not necessarily optimal for 1 | r;, prmp | >~ w;C;.

3.18. Give an algorithm for 1 | intree | Y w;C; and prove that it leads to an
optimal schedule (recall that in an intree each job has at most one successor).

3.19. Give an algorithm for 1 | outtree | > w;C; and show that it leads to an
optimal schedule (recall that in an outtree each job has at most one predecessor).

3.20. Consider the problem 1 || Lyax. The Minimum Slack first (MS) rule
selects at time ¢, when a machine is freed, among the remaining jobs the job
with the minimum slack max(d; —p; —¢,0). Show through a counterexample
that this rule is not necessarily optimal.

3.21. Perform an Adjacent Sequence Interchange for the weighted discounted
flow time cost function. That is, state and prove a result similar to Lemma 3.1.2.

3.22. Consider the problem 1 | chains | > w;(1 — e~"). Describe the algo-
rithm that solves this problem and prove that it results in an optimal sequence.

3.23. Consider the problem 1 | prec | max(hi(S1),...,hn(Sn)), where S; de-
notes the starting time of job j. The cost function h;, j = 1,...,nis decreasing.
Unforced idleness of the machine is not allowed. Describe a dynamic program-
ming type algorithm for this problem similar to the one in Section 3.2. Why
does one have to use here forward dynamic programming instead of backward
dynamic programming?

3.24. Consider the problem 1 | rj, prmp | Lyax. Determine the optimal sched-
ule and prove its optimality.

3.25. Show that

(a) SPT is optimal for 1 | brkdwn | Y Cj,
(b) Algorithm 3.3.1 is optimal for 1 | brkdwn | > Uj,
(c) WSPT is not necessarily optimal for 1 | brkdwn | > w;C;.



66 3 Single Machine Models (Deterministic)
3.26. Consider 1 || > w,;T;. Prove or disprove the following statement: If
w;/pj > Wi/ Pk,

Dy < Dk,

and
dj < dy,

then there exists an optimal sequence in which job j appears before job k.

3.27. Complete the first step of the proof of Theorem 3.3.2.

Comments and References
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This chapter covers several more advanced topics in single machine scheduling.
Some of these topics are important because of the theoretical insights they
provide, others are important because of their applications in practice.

The first section considers a generalization of the total tardiness problem.
In addition to tardiness costs, there are now also earliness costs; the objective
functions are nonregular. The second section focuses on problems with a primary
objective and a secondary objective. The goal is to first determine the set of
all schedules that are optimal with respect to the primary objective; within
this set of schedules a schedule has to be found then that is optimal with
respect to the secondary objective. The third section also focuses on problems
with two objectives. However, now the two objectives have to be considered
simultaneously with the weights of the objectives being arbitrary. The overall
objective is to minimize the weighted sum of the two objectives. The next
section considers the makespan when there are sequence dependent setup times.
There are two reasons for not having considered the makespan before. First,
in most single machine environments the makespan does not depend on the
sequence and is therefore not that important. Second, when there are sequence
dependent setup times, the algorithms for minimizing the makespan tend to be
complicated. The fifth section also considers sequence dependent setup times.
However, now the jobs belong to a fixed number of different families. If in a
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schedule a job is followed by a job from a different family, then a sequence
dependent setup time is incurred; if a job is followed by another job from the
same family, then no setup is incurred. A number of dynamic programming
approaches are described for various different objective functions. The sixth
section focuses on batch processing. The machine can process now a number of
jobs (a batch) simultaneously. The jobs processed in a batch may have different
processing times and the time to process the batch is determined by the longest
processing time. Various different objective functions are considered.

4.1 The Total Earliness and Tardiness

All objective functions considered in Chapter 3 are regular performance mea-
sures (i.e., nondecreasing in C; for all j). In practice, it may occur that if job j is
completed before its due date d; an earliness penalty is incurred. The earliness
of job j is defined as

E; = max(d; — C;,0).

The objective function in this section is a generalization of the total tardiness
objective. It is the sum of the total earliness and the total tardiness, i.e.,

n n
S Ei+> T
j=1 j=1

Since this problem is harder than the total tardiness problem it makes sense
to first analyze special cases that are tractable. Consider the special case with
all jobs having the same due date, i.e., d; = d for all j.

An optimal schedule for this special case has a number of useful properties.
For example, it can be shown easily that after the first job is started, the n jobs
have to be processed without interruption, i.e., there should be no unforced
idleness in between the processing of any two consecutive jobs (see Exercise
4.11). However, it is possible that an optimal schedule does not start processing
the jobs immediately at time 0; it may wait for some time before it starts with
its first job.

A second property concerns the actual sequence of the jobs. Any sequence
can be partitioned into two disjoint sets of jobs and possibly one additional job.
One set contains the jobs that are completed early, i.e., C; < d, and the other
set contains the jobs that are started late. The first set of jobs is called J; and
the second set of jobs Js. In addition to these two sets of jobs, there may be
one more job that is started early and completed late.

Lemma 4.1.1. In an optimal schedule the jobs in set J1 are scheduled first
according to LPT and the jobs in set Jy are scheduled last according to SPT.
In between these two sets of jobs there may be one job that is started early and
completed late.
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Proof. The proof is easy and left as an exercise (see Exercise 4.12). O

Because of the property described in Lemma 4.1.1, it is often said that the
optimal schedule has a V shape.

Consider an instance with the property that no optimal schedule starts pro-
cessing its first job at t = 0, i.e., the due date d is somewhat loose and the
machine remains idle for some time before it starts processing its first job. If
this is the case, then the following property holds.

Lemma 4.1.2. There exists an optimal schedule in which one job is com-
pleted exactly at time d.

Proof. The proof is by contradiction. Suppose there is no such schedule. Then
there is always one job that starts its processing before d and completes its
processing after d. Call this job j*. Let |J1| denote the number of jobs that are
early and |J3| the number of jobs that are late. If |J1| < |J2], then shift the
entire schedule to the left in such a way that job j* completes its processing
exactly at time d. This implies that the total tardiness decreases by |Ja| times
the length of the shift, while the total earliness increases by |Ji| times the
shift. So, clearly, the total earliness plus the total tardiness is reduced. The case
|J1] > |J2| can be treated in a similar way.

The case |J1| = |Jz2| is somewhat special. In this case there are many optimal
schedules, of which only two satisfy the property stated in the lemma. a

For an instance in which all optimal schedules start processing the first job
some time after ¢ = 0, the following algorithm yields the optimal allocations of
jobs to sets J; and Jo. Assume p; > po > -+ > py,.

Algorithm 4.1.3 (Minimizing Total Earliness and Tardiness with
Loose Due Date)
Step 1.
Assign job 1 to Set Ji.
Initialize k = 2.
Step 2.
Assign job k to Set J1 and job k + 1 to Set Jy or vice versa.

Step 3.

If k+2<n—1, increase k by 2 and go to Step 2.
If k+ 2 =n, assign job n to either Set J, or Set Jo and STOP.
If k+2=n+1, then all jobs have been assigned; STOP. I

This algorithm is somewhat flexible in its assignment of jobs to sets J; and
Jo. It can be implemented in such a way that in the optimal assignment the
total processing time of the jobs assigned to J; is minimized. Given the total
processing time of the jobs in J; and the due date d, it can be verified easily
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whether the machine indeed must remain idle before it starts processing its first
job.

If the due date d is tight and it is necessary to start processing a job im-
mediately at time zero, then the problem is NP-hard. However, the following
heuristic, which assigns the n jobs to the n positions in the sequence, is very
effective. Assume again p; > p2 > -+ > py,.

Algorithm 4.1.4 (Minimizing Total Earliness and Tardiness with
Tight Due Date)
Step 1.
Initialize 71 = d and 5 = ij —d.
Initialize k = 1.
Step 2.

If 7 > 7o, assign job k to the first unfilled position in the sequence and
decrease T by pg.
If 1 < 1o, assign job k to the last unfilled position in the sequence and
decrease To by py.

Step 3.
If k < n, increase k by 1 and go to Step 2.
If k=n, STOP. I

Example 4.1.5 (Minimizing Total Earliness and Tardiness with
Tight Due Date)

Consider the following example with 6 jobs and d = 180.

jobs 1 2 3 4 56
p; 106 100 96 22 20 2

Applying the heuristic yields the following results.

T Te Assignment Sequence

180 166 Job 1 Placed First 1,%* * * *
74 166 Job 2 Placed Last 1,*** * 2
74 66 Job 3 Placed First 1,3,** * 2

-22 66 Job 4 Placed Last 1,3,*.*,4,2

-22 44 Job 5 Placed Last 1,3,*,5,4,2

-22 12 Job 6 Placed Last 1,3,6,5,4,2
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Fig. 4.1 Cost functions with common due date and different shapes

Cost
function

4 dy dy Time

Fig. 4.2 Cost functions with different due dates and similar shapes

Consider now the objective Y w'E; 4+ > w”T; and assume again that all the
due dates are the same, i.e., d; = d, for all j. All jobs have exactly the same
cost function, but the earliness penalty w’ and the tardiness penalty w’ are not
the same. All previous properties and algorithms can be generalized relatively
easily to take the difference between w’ and w” into account (see Exercises 4.13
and 4.14).

Consider the even more general objective Y w’E; + > w]T;, with d; = d
for all j. So all jobs have the same due date, but the shapes of their cost
functions are different, see Figure 4.1. The LPT-SPT sequence of Lemma 4.1.1
is in this case not necessarily optimal. The first part of the sequence must now
be ordered in increasing order of w;/p;, i.e., according to Weighted Longest
Processing Time first (WLPT) rule, and the last part of the sequence must be
ordered according to the Weighted Shortest Processing Time first (WSPT) rule.

Consider the model with the objective function > w'E; + > w”T}; and with
each job having a different due date (see Figure 4.2). It is clear that this prob-
lem is NP-hard, since it is a more general model than the one considered in
Section 3.4. This problem has an additional level of complexity. Because of
the different due dates, it may not necessarily be optimal to process the jobs
one after another without interruption; it may be necessary to have idle times
between the processing of consecutive jobs. This problem has therefore two as-
pects: one aspect concerns the search for an optimal order in which to sequence
the jobs and the other aspect concerns the computation of the optimal starting
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times and completion times of the jobs. These two optimization problems are
clearly not independent. Determining the optimal schedule is therefore a very
hard problem. Approaches for dealing with this problem are typically based
either on dynamic programming or on branch-and-bound. However, given a
predetermined and fixed sequence, the timing of the processing of the jobs (and
therefore also the idle times) can be determined fairly easily in polynomial time.
The polynomial time algorithm is also applicable in a more general setting that
is described next.

The most general setting has as objective ) wE; + > w/Tj, where the jobs
have different due dates and different weights. This problem is clearly strongly
NP-hard, since it is harder than the total weighted tardiness problem considered
in Section 3.6. But, given a predetermined ordering of the jobs, the timings of
the processings and the idle times can be computed in polynomial time. Some
preliminary results are useful in order to describe the algorithm that inserts the
idle times in a given sequence. Assume that the job sequence 1,...,n is fixed.

Lemma 4.1.6. Ifd;;1—d;j < pjia, then there is no idle time between jobs
jandj+1.

Proof. The proof is by contradiction. Consider three cases: Job j is early (C; <
d;), job j is completed exactly at its due date (C; = d;), and job j is late
(Cj > d;).

Case 1: If job j is completed early and there is an idle time between jobs j
and j + 1, then the objective can be reduced by postponing the processing of
job j and reducing the idle time. The schedule with the idle time can therefore
not be optimal.

Case 2: If job j is completed at its due date and there is an idle time, then
job j + 1 is completed late. Processing job j + 1 earlier and eliminating the idle
time, reduces the total objective. So the original schedule cannot be optimal.

Case 3: If job j is completed late and there is an idle time, then job j+ 1 is
also completed late. Processing job j 4+ 1 earlier reduces the objective. O

Subsequence wu, . .., v is called a job cluster if for each pair of adjacent jobs j
and j + 1 the inequality
dj+1 —dj < pj
holds and if for j = v — 1 and j = v the inequality does not hold. A cluster of
jobs must therefore be processed without interruptions.

Lemma 4.1.7. In each cluster within a schedule the early jobs precede the
tardy jobs. Moreover, if jobs j and j+ 1 belong to the same cluster and are both
early, then E; > E;1. If jobs j and j + 1 are both late then T; < T4 4.

Proof. Assume jobs j and j + 1 belong to the same cluster. Let ¢ denote the
optimal start time of job j. Subtracting ¢ + p; from both sides of

djr1 —dj < pj1
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and rearranging yields

djy1 =t —pj —pjp1 < dj —t —pj.
This last inequality can be rewritten as

dj = Cj 2 djt1 = Cjpa,

which implies the lemma. a
The given job sequence 1,...,n can be decomposed into a set of m clus-
ters o1, 09,...,0, with each cluster representing a subsequence. In an optimal

solution two consecutive clusters may be processed without any idle time in be-
tween. A group of consecutive clusters that are processed in an optimal solution
without idle times in between is referred to as a block.

Finding the optimal starting times and completion times of the n jobs can
be done by solving a fairly simple Linear Program. Associated with each job are
two decision variables, namely the variable x; that represents the completion
time of job j and the variable z; that represents the penalty cost incurred by
job j. If job j is immediately followed by job k, then the constraint

Tk — Tj 2 Pk

must be satisfied. The predetermined sequence of the n jobs gives rise to n — 1
such constraints. The penalty cost variable z; of job j must satisfy the following
pair of penalty constraints, namely

zj > wj(d; — ;)
and
Zj 2 w;’(xj — dj)

So the Linear Program has 2n variables and 3n — 1 constraints (in addition
to the nonnegativity constraints). The objective of the Linear Program is to

minimize
n
E Zj .
=1

It can be shown fairly easily that in the optimal solution at least one of every
pair of penalty constraints has to be tight.

Example 4.1.8 (Optimizing the Timings Given a Sequence)

Consider seven jobs. The given sequence is 1,...,7. See Table 4.1.

Lemma 4.1.6 indicates that there are three clusters. The first cluster con-
sists of jobs 1 and 2; the second cluster consists of jobs 3, 4, and 5; the third
cluster consists of jobs 6 and 7.
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jobs 1 2 3 45 6 7

P 3 2 736 28
d; 12 4 2618 16 25 30
wi 1020 18 910 16 11
w? 1225 381212 18 15

Table 4.1 Job data of the three clusters.

The Linear Program can be formulated in a straightforward manner. For
example, the first two jobs give rise to the constraint

o — X1 Z 2.
The first job gives rise to the two penalty constraints
zj > 10(12 — ;)

and
zj > 12(x; — 12).

Solving the Linear Program yields the optimal completion times
3,5,14,17,23,25, 33.

The optimal schedule consists of two blocks. The first block consists of the
first cluster and the second block consists of the second and third cluster. ||

As stated earlier, determining at the same time an optimal job sequence as
well as the optimal starting times and completion times of the jobs is a strongly
NP-hard problem.

A branch-and-bound procedure for this problem is more complicated than
the one for the total weighted tardiness problem described in Section 3.6. The
branching tree can be constructed in a manner that is similar to the one for the
L || > w;T; problem. However, finding good lower bounds for 1 || >-w}FE; +
> w?T; is considerably harder. One type of lower bound can be established
by first setting w} = 0 for all j and then applying the lower bound described
in Section 3.6 to the given instance by taking only the tardiness penalties into
account. This lower bound may not be that good, since it is based on two
simplifications.

It is possible to establish certain dominance conditions. For example, if the
due dates of two adjacent jobs both occur before the starting time of the first
one of the two jobs, then the job with the higher wj /p; ratio has to go first.
Similarly, if the due dates of two adjacent jobs both occur after the completion
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time of the last one of the two jobs, then the job with the lower w; /pj ratio has
to go first.

Many heuristic procedures have been developed for this problem. These pro-
cedures are often based on a combination of decomposition and local search.
The problem lends itself well to time-based decomposition procedures, since
it may be possible to tailor the decomposition process to the clusters and the
blocks.

4.2 Primary and Secondary Objectives

In practice a scheduler is often concerned with more than one objective. For
example, he may want to minimize inventory costs and meet due dates. It would
then be of interest to find, for example, a schedule that minimizes a combination
of >° C; and Lax.

Often, more than one schedule minimizes a given objective. A decision-maker
may then wish to consider the set of all schedules that are optimal with respect
to such an objective (say, the primary objective), and then search within this set
of schedules for the schedule that is best with regard to a secondary objective.
If the primary objective is denoted by 7; and the secondary by 72, then such a
problem can be referred to as a | | 7%1), 752).

Consider the following simple example. The primary objective is the total
completion time > C; and the secondary objective is the maximum lateness

Limax, that is, 1 || > Cj(-l), ngx. If there are no jobs with identical processing
times, then there is exactly one schedule that minimizes the total completion
time; so there is no freedom remaining to minimize L, .x. If there are jobs with
identical processing times, then there are multiple schedules that minimize the
total completion time. A set of jobs with identical processing times is preceded
by a job with a strictly shorter processing time and followed by a job with a
strictly longer processing time. Jobs with identical processing times have to be
processed one after another; but, they may be done in any order. The decision-
maker now must find among all the schedules that minimize the total completion
time the one that minimizes Ly.x. S0, in an optimal schedule a set of jobs with
identical processing times has to be sequenced according to the EDD rule. The
decision-maker has to do so for each set of jobs with identical processing times.
This rule may be referred to as SPT/EDD, since the jobs are first scheduled
according to SPT and ties are broken according to EDD (see Exercise 4.16 for
a generalization of this rule).

Consider now the same two objectives with reversed priorities, that is, 1 ||
Lr(rﬂx, > C’]@). In Chapter 3 it was shown that the EDD rule minimizes Ly ax.
Applying the EDD rule yields also the value of the minimum Ly, ,x. Assume that
the value of this minimum L,y is z. The original problem can be transformed
into another problem that is equivalent. Create a new set of due dates d; =
d;+z. These new due dates are now deadlines. The problem is to find a schedule
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that minimizes > C; subject to the constraint that every job must be completed
by its deadline, i.e., the maximum lateness with respect to the new due dates
has to be zero or, equivalently, all the jobs have to be completed on time.

The algorithm for finding the optimal schedule is based on the following
result.

Lemma 4.2.1.  For the single machine problem with n jobs subject to
the constraint that all due dates have to be met, there exists a schedule that
minimizes Y C; in which job k is scheduled last, if and only if

(i) dy, > Y0, by,
(i) pr. > pe, for all € such that dp > 377 pj.

Proof. By contradiction. Suppose that job k is not scheduled last. There is a set
of jobs that is scheduled after job k£ and job £ is the one scheduled last. Condition
(i) must hold for job ¢ otherwise job ¢ would not meet its due date. Assume
that condition (ii) does not hold and that py < pg. Perform a (nonadjacent)
pairwise interchange between jobs k and /. Clearly, the sum of the completion
times of jobs k and ¢ decreases and the sum of the completion times of all jobs
scheduled in between jobs k£ and ¢ goes down as well. So the original schedule
that positioned job ¢ last could not have minimized ) C;. O

In the next algorithm J¢ denotes the set of jobs that remain to be scheduled.

Algorithm 4.2.2 (Minimizing Total Completion Time with Deadlines)

Step 1.
Setk=n, 7= Z?lej, Je=A{1,...,n}.

Step 2.
Find k* in J¢ such that dj» >T and pi= > pe,
for all jobs ¢ in J¢ such that dy > 7.
Put job k* in position k of the sequence.

Step 3.

Decrease k by 1.
Decrease T by pg~.
Delete job k* from J€.

Step 4.
If k> 1 go to Step 2, otherwise STOP. I

This algorithm, similar to the algorithms in Sections 3.2 and 3.6, is a back-
ward algorithm. The following example illustrates the use of this algorithm.
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Example 4.2.3 (Minimizing the Total Completion Time with
Deadlines)

Consider the following instance with 5 jobs.

jgobs 1 2 3 4 5

Rj 4 6
d; 10 12 14 18 18

Starting out, 7 = 18. Two jobs have a deadline larger than or equal to
7, namely jobs 4 and 5. Job 4 has the longer processing time and should
therefore go last. For the second iteration the value of 7 is reduced to 14.
There are two jobs that have a deadline greater than or equal to 14, namely
3 and 5. So either job can occupy the second last position. For the third
iteration the value of 7 is reduced further down to 12. Again, there are two
jobs that have a deadline greater than or equal to 12; either jobs 2 and 3
or jobs 2 and 5. Clearly, job 2 (with a processing time of 6) should go in
the third position. Proceeding in this manner yields two optimal schedules,
namely schedules 5,1,2,3,4 and 3,1,2,5,4. Il

It can be shown that even when preemptions are allowed, the optimal sched-
ules are nonpreemptive.

A fairly large number of problems of the type 1| 8 | ’y}l),fyém have been
studied in the literature. Very few can be solved in polynomial time. However,
problems of the type 1| S | ijCj(l),fyég) tend to be easy (see Exercises 4.16

and 4.17).

4.3 Multiple Objectives: A Parametric Analysis

Suppose there are two objectives v; and ~s. If the overall objective is 81y; +6272,
where 61 and 0, are the weights of the two objectives, then a scheduling problem
can be denoted by 1 | 8 | 8171 + 62y2. Since multiplying both weights by the
same constant does not change the problem, it is in what follows assumed that
the weights add up to 1, i.e., 81 + 03 = 1. The remaining part of this section
focuses on a specific class of schedules.

Definition 4.3.1 (Pareto-Optimal Schedule). A schedule is called
Pareto-optimal if it is not possible to decrease the value of one objective without
increasing the value of the other.

All Pareto-optimal solutions can be represented by a set of points in the
(71,72) plane. This set of points illustrates the trade-offs between the two ob-
jectives. Consider the two objectives analyzed in the previous section, i.e., > C;
and Lpax. The two cases considered in the previous section are the two extreme
points of the trade-off curve. If §; — 0 and 65 — 1, then
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3C;
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Lmax(EDD) Lyax(SPT/EDD) [,
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Fig. 4.3 Trade-offs between total completion time and maximum
lateness

1180 +6v2 — 1|5 ’Yé”ﬁ@-

If 5 — 0 and 6; — 1, then

LB +0292 — 1|81V,

So the two extreme points of the trade-off curve in Figure 4.3 correspond to
the problems discussed in the previous section. At one of the extreme points
the total completion time is minimized by the SPT rule and ties are broken
according to EDD; the Ly . of this schedule can be computed easily and is
denoted by Lyax(SPT/EDD). At the other extreme point the schedule is gen-
erated according to a more complicated backward procedure. The L,y is equal
t0 Limax(EDD) and the total completion time of this schedule can be computed
also. Clearly,

Liax(EDD) < Lyax(SPT/EDD).

The algorithm that generates all Pareto-optimal solutions in the trade-off
curve contains two loops. One series of steps in the algorithm (the inner loop)
is an adaptation of Algorithm 4.2.2. These steps determine, in addition to the
optimal schedule with a maximum allowable L.y, also the minimum incre-
ment § in the Ly, that would allow for a decrease in the minimum Cj. The
second (outer) loop of the algorithm contains the structure that generates all
the Pareto optimal points. The outer loop calls the inner loop at each Pareto-
optimal point to generate a schedule at that point and also to determine how
to move to the next efficient point. The algorithm starts out with the EDD
schedule that generates the first Pareto-optimal point in the upper left part of
the trade-off curve. It determines the minimum increment in the L.,., needed
to achieve a reduction in ) C;. Given this new value of Lyax, it uses the algo-
rithm in the previous section to determine the schedule that minimizes ) Cj,
and proceeds to determine the next increment. This goes on until the algorithm
reaches Lyax(SPT/EDD).
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Algorithm 4.3.2 (Determining Trade-Offs between Total Completion
Time and Maximum Lateness)

Step 1.

Setr =1. -

Set Linax = Limax(EDD) and d; = dj + Liax.
Step 2.

Setk=n and J°={1,...,n}.
Set T = Z?lej and § =T.
Step 3.
Find j* in J¢ such that Jj* > 7 and pj- > pi,
for all jobs I in J¢ such that d; > 7.
Put job j* in position k of the sequence.

Step 4.

If there is no job ¢ such that d; < T and p; > Dj=, go to Step 5.
Otherwise find j** such that

T —djue = mein(T —dy)

for all £ such that dy < T and py > pj«.
Set 0" =T — djw.
If 0** < 4, then § = §**.

Step 5.

Decrease k by 1.

Decrease T by pj-.

Delete job j* from J€.

If k> 1 go to Step 3, otherwise go to Step 6.

Step 6.

Set Liax = Limax + 0.
[f Lmax > Lnlax(SPT/El)_D>7 Ehen STOP.
Otherwise set v =r+1, dj = d; + 9, and go to Step 2. I

The outer loop consists of Steps 1 and 6 while the inner loop consists of Steps
2, 3, 4, and 5. Steps 2, 3 and 5 represent an adaptation of Algorithm 4.2.2
and Step 4 computes the minimum increment in the L.« needed to achieve a
subsequent reduction in > C}.

It can be shown that the maximum number of Pareto-optimal solutions is
n(n —1)/2, which is O(n?) (see Exercise 4.19). Generating one Pareto-optimal
schedule can be done in O(n log(n)). The total computation time of Algo-
rithm 4.3.2 is therefore O(n3 log(n)).
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Example 4.3.3 (Determining Trade-Offs between Total Completion
Time and Maximum Lateness)

Consider the following set of jobs.

jgobs 1 2 3 4 5

p; 1 3 6 79
d; 30 27 20 15 12

The EDD sequence is 5, 4, 3, 2, 1 and Lyax(EDD) = 2. The SPT/EDD
sequence is 1, 2, 3, 4, 5 and Ly (SPT/EDD) = 14. Application of Algo-
rithm 4.3.2 results in the following iterations.

Iteration (D C;, Lmax) Pareto-optimal schedule current 7+ § )
1 96, 2 54,3, 1,2 3229221714 1
2 77,3 1,5,4,3,2 3330231815 2
3 75,5 1,4,5,3,2 3532252017 1
4 64, 6 1,2,5,4,3 3633262118 2
5 62, 8 1,2, 4,5,3 3835282320 3
6 60, 11 1,2,3,5,4 41 38 31 26 23 3
7 58, 14 1,2,3,4,5 44 41 34 29 26 STOP

) ) )

However, when one would consider the objective 61 Lmax + 62 C;, then
certain Pareto-optimal schedules never may be optimal, no matter what the
weights are (see Exercise 4.8). I

Consider the generalization 1 || 61> w;C; + 02Lmax. It is clear that the
two extreme points of the trade-off curve can be determined in polynomial time
(using WSPT/EDD and EDD). However, even though the two end-points of the
trade-off curve can be analyzed in polynomial time, the problem with arbitrary
weights 61 and 65 is NP-hard.

The trade-off curve that corresponds to the example in this section has the
shape of a staircase. This shape is fairly common in a single machine environ-
ment with multiple objectives, especially when preemptions are not allowed.
However, in other machine environments, e.g., parallel machines, smoother
curves may occur, especially when preemptions are allowed (see Chapter 15).

4.4 The Makespan with Sequence Dependent Setup Times

For single machine scheduling problems with all r; = 0 and no sequence depen-
dent setup times the makespan is independent of the sequence and equal to the
sum of the processing times. When there are sequence dependent setup times
the makespan does depend on the schedule. In Appendix D it is shown that
1| sjk | Cmax is strongly NP-hard.
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(a) (b)

Fig. 4.4 Permutation mappings: (a) {0,1,2,3} — {2,3,1,0}
(b) {0,1,2,3} — {2,1,3,0}

However, the NP-hardness of 1 | sj; | Cmax in the case of arbitrary setup
times does not rule out the existence of efficient solution procedures when the
setup times have a special form. And in practice setup times often do have a
special structure.

Consider the following structure. Two parameters are associated with job j,
say a; and b;, and s, = | ar — b; |. This setup time structure can be described
as follows: after the completion of job j the machine is left in state b; and to be
able to start job k the machine has to be brought into state ax. The total setup
time necessary for bringing the machine from state b; to state ay, is proportional
to the absolute difference between the two states. This state variable could be,
for example, temperature (in the case of an oven) or a measure of some other
setting of the machine. In what follows it is assumed that at time zero the state
is by and that after completing the last job the machine has to be left in state
ag (this implies that an additional “clean-up” time is needed after the last job
is completed).

This particular setup time structure does allow for a polynomial time algo-
rithm. The description of the algorithm is actually easier in the context of the
Travelling Salesman Problem (TSP). The algorithm is therefore presented here
in the context of a TSP with n + 1 cities; the additional city being called city 0
with parameters ag and by. Without loss of generality it may be assumed that
bo < by < --- < by,. The travelling salesman leaving city j for city & (or, equiva-
lently, job k following job j) is denoted by k& = ¢(j). The sequence of cities in a
tour is denoted by @, which is a vector that maps each element of {0,1,2,...,n}
onto a unique element of {0,1,2,...,n} by relations kK = ¢(j) indicating that
the salesman visits city k after city j (or, equivalently, job k follows job j).
Such mappings are called permutation mappings. Note that not all possible
permutation mappings of {0,1,2,...,n} constitute feasible TSP tours. For ex-
ample, {0,1,2,3} mapped onto {2,3,1,0} represents a feasible TSP. However,
{0,1,2,3} mapped onto {2,1,3,0} does not represent a feasible tour, since it
represents two disjoint sub-tours, namely subtour 0 — 2 — 3 — 0 and the
subtour 1 — 1 which consists of a single city (see Figure 4.4). Define ¢(k) = k
to mean a redundant tour that starts and ends at k.
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n-1

ay

a

ay Cost of going from
jtokis |a; b

() =k

Fig. 4.5 Cost of going from j to k

For the special cost structure of going from city j to k it is clear that this cost
is equal to the vertical height of the arrow connecting b; with ay in Figure 4.5.
Define the cost of a redundant sub-tour, i.e., ¢(k) = k, as the vertical height of
an arrow from by to ay.

Thus any permutation mapping (which might possibly consist of subtours)
can be represented as a set of arrows connecting b;, j = 0,...,n to ax, k =
0,...,n and the cost associated with such a mapping is simply the sum of the
vertical heights of the n + 1 arrows.

Define now a swap I(j, k) as that procedure which when applied to a permu-
tation mapping @ produces another permutation mapping @' by affecting only
the assignments of j and k and leaving the others unchanged. More precisely,
the new assignment ¢’ = ®I(j, k) is defined as:

¢'(k) = o(5),

¢'(4) = o(k),
and

¢'(1) = ¢(l)

for all I not equal to j or k. This transformation may also be denoted by
&'(j) = ¢(4)I(j,k). Note that this is not equivalent to an adjacent pairwise
interchange within a sequence, since a permutation mapping ¢ does not always
represent a sequence (a feasible TSP tour) to begin with. More intuitively, it
only represents a swap of the arrows emanating from b; and by, leaving all other
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b Do)
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// agi
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Fig. 4.6 Change in cost due to swap I(j, k)

arrows unchanged. In particular, if these arrows crossed each other before they
will uncross now and vice versa. The implication of such a swap in terms of
the actual tour and subtours is quite surprising though. It can be easily verified
that the swap I(j, k) has the effect of creating two subtours out of one if j and
k belong to the same subtour in @. Conversely, it combines two subtours to
which j and k belong otherwise.

The following lemma quantifies the cost of the interchange I(j, k) applied
to the sequence ®; the cost of this interchange is denoted by cgI(j, k). In the
lemma, the interval of the unordered pair [a, b] refers to an interval on the real

line and ( )
2(b—a) ifb>a
|[“H|{2m—b)ﬁb<a

Lemma 4.4.1. If the swap I(j,k) causes two arrows that did not cross
earlier to cross, then the cost of the tour increases and vice versa. The magnitude
of this increase or decrease is given by

cal (4, k) =I[ [bj, b&] O [ag(), agm] |
So the change in cost is equal to the length of vertical overlap of the intervals
[bj,bk] and [a¢(j)7a¢(;€)].

Proof. The proof can be divided into several cases and is fairly straightforward
since the swap does not affect arrows other than the two considered. Hence it
is left as an exercise (see Figure 4.6). |

The lemma is significant since it gives a visual cue to reducing costs by
uncrossing the arrows that cross and helps quantify the cost savings in terms of
amount of overlap of certain intervals. Such a visual interpretation immediately
leads to the following result for optimal permutation mappings.

Lemma 4.4.2. An optimal permutation mapping @* is obtained if

bj < br == ag-(j) < g (k-
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Proof. The statement of the theorem is equivalent to no lines crossing in the
diagram. Suppose two of the lines did cross. Performing a swap which uncrosses
the lines leads to a solution as good or better than the previous. O

As mentioned before, this is simply an optimal permutation mapping and
not necessarily a feasible tour. It does, however, provide a lower bound for the
optimal cost of any TSP. This optimal &* may consist of p distinct subtours,
say, TR1,...,TR,. As seen before, performing a swap I(j, k) such that j and
k belong to distinct subtours will cause these subtours to coalesce into one and
the cost will increase (since now two previously uncrossed lines do cross) by an
amount cg-I(j, k). It is desirable to select j and k from different subtours in
such a way that this cost of coalescing cg+I(j, k) is, in some way, minimized.

To determine these swaps, instead of considering the directed graph which
represents the subtours of the travelling salesman, consider the undirected ver-
sion of the same graph. The subtours represent distinct cycles and redundant
subtours are simply independent nodes. To connect the disjoint elements (i.e.,
the cycles corresponding to the subtours) and construct a connected graph,
additional arcs have to be inserted in this undirected graph. The costs of the
arcs between cities belonging to different subtours in this undirected graph are
chosen to be equal to the cost of performing the corresponding swaps in the
tour of the travelling salesman in the directed graph. The cost of such a swap
can be computed easily by Lemma 4.4.1. The arcs used to connect the disjoint
subtours are selected according to the Greedy Algorithm: select the cheapest arc
which connects two of the p subtours in the undirected graph; select among the
remaining unused arcs the cheapest arc connecting two of the p — 1 remaining
subtours, and so on. The arcs selected then satisfy the following property.

Lemma 4.4.3. The collection of arcs that connect the undirected graph
with the least cost contain only arcs that connect city j to city j + 1.

Proof. The cost of the arcs (cg+I(j,k)) needed to connect the distinct cycles
of the undirected graph are computed from the optimal permutation mapping
defined in Lemma 4.4.2 in which no two arrows cross. It is shown below that
the cost of swapping two non-adjacent arrows is at least equal to the cost of
swapping all arrows between them. This is easy to see if the cost is regarded as
the intersection of two intervals given by Lemma 4.4.1. In particular, if £ > j+1,

co=1(5, k) = || [bj, bk] N [ag=(j)s ag~] ||
k—1

> Z || [bi; bit1] N [age(i)s Gg= i1)] ]

i=j

k—1
= co-I(ii+1)
i=j
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b 4(3) p 45(3)
 To(2) b o(2)
 do(1) — b do(1)

Fig. 4.7 Situation in Example 4.4.4

So the arc (4, k) can be replaced by the sequence of arcs (¢,i+1), i = j,...,k—1
to connect the two subtours to which j and k belong at as low or lower cost. O

It is important to note that in the construction of the undirected graph,
the costs assigned to the arcs connecting the subtours were computed under
the assumption that the swaps are performed on @* in which no arrows cross.
However, as swaps are performed to connect the subtours this condition no
longer remains valid. However, it can be shown that if the order in which the
swaps are performed is determined with care, the costs of swaps are not affected
by previous swaps. The following example shows that the sequence in which the
swaps are performed can have an impact on the final cost.

Example 4.4.4 (Sequencing of Swaps)

Consider the situation depicted in Figure 4.7. The swap costs are cgI(1,2) =
1 and ¢gI(2,3) = 1. If the swap I(2,3) is performed followed by the swap
1(1,2) the overlapping intervals which determine the costs of the interchange
remain unchanged. However, if the sequence of swaps is reversed, i.e., first
swap I(1,2) is performed followed by swap I(2, 3), then the costs do change:
the cost of the first swap remains, of course, the same but the cost of the
second swap, ¢aI(2,3) now has become 2 instead of 1.

The key point here is that the two swaps under consideration have an
arrow in common, i.e., by — ag(2). This arrow points “up” and any swap
that keeps it pointing “up” will not affect the cost of the swap below it as
the overlap of intervals does not change. I

The example suggests that if a sequence of swaps needs to be performed,
the swaps whose lower arcs point “up” can be performed starting from the
top going down without changing the costs of swaps below them. A somewhat
similar statement can be made with respect to swaps whose lower arrows point
“down”
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In order to make this notion of “up” and “down” more rigorous, classify the
nodes into two types. A node is said to be of Type I if a; < by(j, i-e., the
arrow points “up”, and it is of Type IL if a; > by(j). A swap is of Type I if its
lower node is of Type I and of Type II if its lower node is of Type II. From the
previous arguments it is easy to deduce that if the swaps I(j,7 + 1) of Type I
are performed in decreasing order of the node indices, followed by swaps of
Type II in increasing order of the node indices, a single tour is obtained without
changing any cg+I(j, j+1) involved in the swaps. The following algorithm sums
up the entire procedure in detail.

Algorithm 4.4.5 (Finding Optimal Tour for TSP)
Step 1.

Arrange the bj in order of size and renumber the jobs so that
bo <by <+ < by,
The permutation mapping @* is defined by
¢"(j) =k,
k being such that ay, is the (j + 1)th smallest of the a;.

Step 2.

Form an undirected graph with n + 1 nodes and undirected arcs Aj 4« (j
connecting the jth and ¢*(j)th nodes.

If the current graph has only one component, then STOP.

Otherwise go to Step 3.

Step 3.
Compute the interchange costs cg«I(j,j + 1) for j=0,...,n—1:

ce+I(j,7 +1) = 2max (min(bj+1,a¢,*(j+1)) —max(b;, ag-(5)), 0)

Step 4.

Select the smallest ce«I1(j,7 + 1) such that j is in one component and

j+ 1 in another (break ties arbitrarily).

Insert the undirected arc Aj j+1 into the graph and

repeat this step until all components in the undirected graph are connected.

Step 5.

Divide the arcs selected in Step 4 into two groups.
Those Aj ji1 for which ag-(;y > bj go in Group 1;
the remaining go in Group 2.
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Step 6.

Find the largest index j1 such that Aj, j, 41 is in Group 1.
Find the second largest js, and so on.

Find the smallest index k1 such that Ay, ,+1 s in Group 2.
Find the second smallest ko, and so on.

Step 7.

The optimal tour @** is constructed by applying the following
sequence of interchanges to the permutation ®*:

& = Q*1(j1, j1+1)1(Ja2, jo+1).. I (G, i+ 1) I (k1, ka1 +1) I (k2, ko41) ... ] (K, km—+1).
|

The total cost of the resulting tour may be viewed as consisting of two
components. One is the cost of the unrestricted permutation mapping ¢* before
the interchanges are performed. The other is the additional cost caused by the
interchanges.

That this algorithm actually leads to the optimal tour can be shown in two
steps. First, a lower bound is established for the total cost of an arbitrary
permutation mapping. Second, it is shown that this lower bound, in case the
permutation mapping represents an actual tour, is greater than or equal to the
total cost of the tour constructed in the algorithm. These two steps then prove
the optimality of the tour of the algorithm. As this proof is somewhat intricate
the reader is referred to the literature for its details.

A careful analysis of the algorithm establishes that the overall running time
is bounded by O(n?).

Example 4.4.6 (Finding Optimal Tour for TSP)

Consider 7 cities with the parameters given below.

cities 0 1 2 34 5 6

b; 115 26 40 3 19 31
a; 7 16 22 18 4 45 34

Step 1. Reordering the cities in such a way that b; < b;4; results in the
ordering below and the ¢*(j) below:

cittes 01 2 3 4 5 6

bj 1315 19 26 31 40
age(jy 4 7 16 18 22 34 45
¢*(j) 10 2 6 4 5 3
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Step 2. Form the undirected graph with j connected ¢*(j). Nodes 0 and 1
have to be connected with one another; nodes 3 and 6 have to be connected
with one another; nodes 2, 4 and 5 are independent (each one of these three
nodes is connected with itself).

Step 3. Computation of the interchange costs cg«I(j,j + 1) gives

cg+1(0,1) =0

co-I(1,2) = 2(15 - 7) = 16
co-1(2,3) = 2(18 — 16) = 4
co1(3,4) = 2(22 — 19) =
cwfuj):2@1f2®4—m
co-1(5,6) = 2(40 — 34) = 12

Step 4. The undirected arcs A2, A3, A3z 4 and Ay 5 are inserted into the
graph.

Step 5. The four arcs have to be partitioned into the two groups. In order to
determine this, each b; has to be compared to the corresponding ay- ;).

arcs b; g () Group
Al,g b1 = 3 a(z,*(l) = ag = 7 1
AQ 3 bg =15 a¢*(2) = ag = 16 1
A34 b3 =19 a¢*(3) = ag = 18 2
A4’5 b4 = 26 a¢*(4) = a4 = 22 2

Step 6. j1 =2, jo =1,k =3 and ky = 4.

Step 7. The optimal tour is obtained after the following interchanges.
& =*1(2,3)I(1,2)1(3,4)I(4,5).

So the optimal tour is
0—-1-6—-3—+4—-5—-2=0.

The cost of this tour is

34+154+54+3+8+15+8=57 I
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In practice, when the setup times have an arbitrary structure, the myopic
Shortest Setup Time (SST) first rule is often used. This rule implies that when-
ever a job is completed, the job with the smallest setup time is selected to go
next. This SST rule is equivalent to the Nearest Neighbour rule for the TSP.
Applying the SST rule to the instance in Example 4.4.6 results in the tour

0—-1—-2—-6—23—>4—5—0.
The associated cost is
3+13+3+5+3+8+24=059.

This tour is not optimal.
Even though the SST rule usually leads to reasonable schedules, there are
instances where the ratio

Crmax(9ST) — E;'L=1 pj
CmaX(OPT) - Z?:l Pj

is quite large. Nevertheless, the SST rule is often used as an integral component
within more elaborate dispatching rules (see Section 14.2).

4.5 Job Families with Setup Times

Consider n jobs that belong to F' different job families. Jobs from the same
family may have different processing times, but they can be processed one
after another without requiring any setup in between. However, if the machine
switches over from one family to another, say from family g to family h, then
a setup is required. If the setup time is sequence dependent, it is denoted by
Sgn. If the setup time depends only on the family that is about to start, it is
denoted by sp. If it does not depend on either family, it is denoted by s. In what
follows, sequence dependent setup times satisfy the so-called triangle inequality,
ie., sfg+ sgn > syp for any three families f, g, and h. (The reverse inequality
would not make sense, since one always would do then two setups instead of
the single longer setup.) If the very first job to be processed in the sequence
belongs to family h, then the setup at time 0 is sgp.

This section does not consider the makespan objective, since it has already
been discussed in a fair amount of detail in the previous section. This section
does cover the total weighted completion time objective, the maximum lateness
objective, and the number of tardy jobs objective.

Consider the problem 1 | fmis, sgn, | > w;C;. Before describing a backward
dynamic programming procedure for this problem it is necessary to establish
some properties of optimal schedules. Any schedule consists of F' subsequences
of jobs that are intertwined with one another and each subsequence corresponds
to one family. The next result focuses on the subsequences in optimal schedules.
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Lemma 4.5.1. In an optimal schedule for 1 | fmlis,sqn | > w;C; jobs
from the same family are ordered according to WSPT.

Proof. Consider an optimal sequence o* = 01, j, 09, k, 03, where jobs j and k
are from the same family and o1, o2 and o3 are arbitrary partial sequences.
The partial sequence oo does not contain any job from the family that jobs j
and k belong to. It suffices to show that if w;/p; < wg/pk, then either sequence
o' =o1,k, j,09,03 or sequence ¢” = 01,09, k, j,03 has a smaller total weighted
completion time. It can be shown that, because of the triangle inequality that
applies to setup times, the interchanges yielding sequences ¢’ and ¢’ reduce the
total setup time (subsequence o3 starts in sequence o’ as well as in sequence o’
earlier than in sequence ¢*). The setup times can therefore be ignored.

It is possible to replace two consecutive jobs u and v in a sequence by a
single composite job r with processing time p, = p, + p, and weight w, =
Wy + w,. This increases the total weighted completion time of the sequence
by an amount w,p,. Replacing the partial sequence oy in ¢*, ¢/ and ¢ by
an accordingly defined composite job ¢ changes all three objective values by
the same constant (independently from the position of o3 in the sequence). So,
substituting a partial sequence with a composite job changes the overall cost
only by a constant; comparisons of the schedules based on the values of the
objective function will yield the same result.

Now it is easy to see (through a standard adjacent pairwise interchange
argument), that since job k has a higher priority than job j, either the composite
job £ has a higher priority than job j implying that ¢’ is better than o* or the
composite job ¢ has a lower priority than job k implying that ¢’ is better
than o*. O

In order to describe a backward dynamic programming procedure, some no-
tation has to be introduced. Let ngy denote the number of jobs from family g.
Let (4, g) refer to job j from family g, j = 1,...,ng; it has a processing time
pjg and a weight w;,. Without loss of generality one can assume that

Wig  Wag > > Wny,g

>

Pig DP2g - - png,g

forallg=1,...,F.

Let V(q1,...,qr,h) denote the minimum total weighted completion time of
schedules that contain jobs (gq,9), ..., (ng,g) for g =1,..., F where job (g, h)
from family h is the first one to be processed starting at time 0. In other words,
V(q,.-.,qF,h) defines the minimum total weighted completion time among all
schedules that contain for each family g, g = 1,..., F, all ng; — g5 + 1 lowest
priority jobs (gg,9),...,(ng,g) and that starts at time 0 with a batch of jobs
from family h. Note that g, < nj, and that the setup for the batch of jobs of
family A at the start of the schedule is not included.

A backward dynamic programming algorithm can now be described as fol-
lows.
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Algorithm 4.5.2 (Minimizing the Total Weighted Completion Time)
Initial Condition:
Vini+1,...,np+1,9) =0, forg=1,... F.

Recursive Relation:
V(q17"'aqF7h) =

min (V(qi7 oy qp D) 4 (Pg o + Shint) Z Z Wiy — shh/wq,uh),

h'=1,..., po e
- —Hg

where q;, = qn + 1 and q; = q4 if g # h, and spp =0 if h=h';
forqgg=ng+1,ng,...,1, g=1,...,F, h=1,... F.

Optimal Value Function:

F ng

2 (V0 1 o0 323 ) H

g=1j=1

In words, this algorithm can be described as follows. The minimization selects
a previous schedule to which job (gp,h) is appended at the beginning. If the
first job of the previous schedule is also from family h, i.e., h’ = h, then this
previous schedule is only delayed by pg, ». On the other hand, if the first job
of the previous schedule is from family h’, where h’ # h, then the delay is
Dgn.h + Shh, because the first job of the previous schedule starts a new batch
requiring a setup between the job from family & and the job from family h'.

It is easy to obtain an upper bound for the makespan of any schedule by
taking the sum of all the processing times plus n times the maximum setup
time. Let U denote this upper bound. The number of states for which the value
function has to be computed recursively is then O(n"F Uf). The value of each
state can be computed in O(F') (since the minimum is taken over F' values). So
the algorithm operates in O(F?nf" U).

Example 4.5.3 (Dynamic Programming and the Total Weighted
Completion Time)

Consider two families, i.e., F© = 2. The sequence dependent setup times
between the families are sj5 = s91 = 2 and sg1 = Sg2 = 0. There is one job
in family 1 and two jobs in family 2, i.e., n; = 1 and ny = 2. The processing
times are in the table below:

jobs (1,1) (1,2) (2,2)

Djg 3 1 1
wj; 27T 30 1
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Applying the WSPT rule to the two jobs of family 2 indicates that job
(1,2) should appear in the schedule before job (2,2).

Applying the dynamic procedure results in the following computations.
The initial conditions are: V'(2,3,1) = V(2, 3,2) = 0. These initial conditions
basically represent empty schedules.

The first recursive relation computes an optimal value function by ap-
pending job (1,1) to the empty schedule and then computes an optimal value
function by appending job (2,2) to the empty schedule.

V(1,3,1) = min (V(z, 3,1) + (p11 + s11)wi1 — S11011,
V(2,3,2) + (p11 + s12)w11 — 81211111)

— min (O+(3+O)27—O><27, 0+(3+2)2772><27) = 81

and

V(2,2,2) = min (V(z, 3,2) + (P22 + S22)Wan — S20was,
V(2,3,1) + (paz + s21)waz2 — 82111122)
—min (0+(1+0)1-0x1, 0+(1+2)1-2x1) =1
The next value functions to be computed are V(1,2,1) and V (1,2, 2).

V(1,2,1) = V(2,2,2) + (p11 + s12)(wi1 + waz) — S12w11
=14+3+2)(27+1)—2x27 = 87

(Note that it was not necessary here to consider V(2,2,1) on the RHS of the
expression above, since state (2,2, 1) is not a feasible state.) Similarly,

V(1,2,2) = V(1,3,1) + (p22 + s21) (w11 + waz) — s21wa2
814 (14+2)(27+1)—2x1 = 163

(Again, it is not necessary to consider here V(1,3,2) since state (1,3,2) is
not feasible.)
Proceeding in a similar fashion yields

V(2,1,2) =V(2,2,2) + (p12) (w12 + waz) =14+ 1 x (304 1) = 32.
Finally,

V(1,1,1) =V (2,1,2) + (p11 + s12)(wi1 + wiz + wa2) — s12wn1
=32+ (3+2)(2T+30+1) —2x27 = 268
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and
V(1,1,2) = min (V (1,2,1) + (p12 + s21) (w12 + waz + w11) — S21w12,
V(1,2,2) + (p12) (w12 + wa2 + w11))

—m1n(87+3>< (27430 + 1) — 2 x 30, 163+1><(27+30+1))
= min(201,221) = 201

The optimal value function is
min (V(1, 1,1),V(1,1, 2)) = min(268,201) = 201.

Backtracking yields the optimal schedule (1,2),(1,1),(2,2) with a total
weighted completion time of 201. I

The next objective to be considered is Liax, i.€., the problem 1 | fmls, sgp |
Lmax- Let djg denote the due date of job (j,9), 7 = 1,...,n4, g = 1,..., F.
Before describing the dynamic programming procedure for this problem it is
again necessary to establish some properties pertaining to optimal schedules.
Again, a schedule can be regarded as a combination of F' subsequences that are
intertwined with one another, each subsequence corresponding to one family.
The following lemma focuses on these subsequences.

Lemma 4.5.4.  There exists an optimal schedule for 1| fmis, sgn, | Lmax
with the jobs from any given family sequenced according to EDD.

Proof. The proof can be constructed in a manner that is similar to the proof of
Lemma 4.5.1 and is left as an exercise. O

In order to formulate a dynamic programming procedure, first assume that
dlg S ng S e S dng,g7

for g=1,...,F. Let V(q1,...,qr,h) denote the minimum value of the maxi-
mum lateness for schedules containing jobs (qq4,9),...,(ng,g9) for g=1,.... F
where job (gn, h) is processed first starting at time zero, and the setup for the
batch of jobs of family h at the start of the schedule is not included. The fol-
lowing backward dynamic programming procedure can now be applied to this
problem.

Algorithm 4.5.5 (Minimizing the Maximum Lateness)
Initial Condition:
Ving+1,...,np+1,g9) = —00, forg=1,...,F.
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Recursive Relation:

V(Q17~-~7CIF7h):

h/:H1li.r.l. F (maX (V(qll’ ] qé” h/) + Dgy,h T Shh's Pgp,h — dq’wh))
where g, = qn +1, q, =qy if g # h, and spp =0 if h=1';
forgg=ng+1,ng,...,1, g=1,...,F, h=1,... F.

Optimal Value Function:

hzl’%l}"l,F (V(l,...,Lh)—&—so;L) I

In words, the minimization in the recursive relationship assumes that if job
(gn, h) (with processing time pg, 1) is appended at the beginning of a schedule
that contains jobs (¢1,1),..., (¢, F), then the maximum lateness of these jobs
is increased by pg, n + Snn/, while the lateness of job (g, h) itself is pg, .n —
dg, n- In the recursive relationship the maximum of these latenesses has to be
minimized. The time complexity of this algorithm can be determined in the same
way as the time complexity of the algorithm for the total weighted completion
time; it operates also in O(F*n’U).

Consider now the problem 1 | fmls, sgn | > U;. Recall that the algorithm that
yields an optimal solution for 1 || > U; operates forward in time. This already
may suggest that it probably would not be that easy to find a backward dynamic
programming algorithm for 1 | fmls, sgn | > Uj; this problem requires, indeed,
a forward dynamic programming algorithm.

Before describing the dynamic programming algorithm that solves this prob-
lem it is again necessary to establish some properties of optimal schedules. An
optimal schedule can again be regarded as a combination of F' subsequences that
are intertwined, with each subsequence corresponding to one family. A subse-
quence from a family contains jobs that are completed early as well as jobs that
are completed late. The early jobs appear in the subsequence before the late
jobs. The following lemma focuses on the structure of such a subsequence.

Lemma 4.5.6.  There exists an optimal schedule for 1 | fmls,sgn | > U;
that has all the on-time jobs from any given family sequenced according to EDD.
In such an optimal schedule the jobs from any given family that are finished late
are processed after all on-time jobs from that family have been completed.

Proof. The proof is easy and is left as an exercise. O

Assume again that the jobs within each family g are indexed so that di, <
-+ < dy, 4. In order to formulate a dynamic program for 1 | fmis, sgn | > U
let V(qi,...,qr,u, h) denote the minimum makespan for schedules that contain
early jobs from the sets {(1,9),...,(q4,9)}, 9 =1,..., F, with u being the total
number of late jobs from these sets and a family A job being the last job in
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the schedule that is completed early. Note that g, > 1. The following forward
dynamic programming algorithm solves the problem.

Algorithm 4.5.7 (Minimizing the Number of Tardy Jobs)

Initial Condition:

0, foru=Y" ¢
Vigi,...,qr,u,0) =4 7 eg=1197
(@ " ) { 00, otherwise

for q4=0,1,...,ng, g=1,...,F, u:O,l,...,Zleqg.
Recursive Relation:

V(ql,...,qF,u,h):min( min (V(q’l,...,q}y,u,h’) + T),
h'eG(q1,....qF ,u,h)

1/(q'1,...,c1;771L—l,h))7

where q; = q4 for g # h, @, = qn — 1, T = Sp'n + Py, b

spn =01 h="n, and where G(q,...,qr,u,h) =

={WIne{0,1,....9}, V(di,---,qpu, W) + 7 < dg, n};
forqs=0,1,...,ng, g=1,...,F, and
u:0,1,...,25:1qg andh=1,...,F.

Optimal Value Function:

min (u \gz(ggifle (V(nl,...,np,u,g)) <oo> I

In words, the procedure can be described as follows: the first term in the
minimization of the recursion selects job (gn, k) to be scheduled on time if this
is possible and chooses a batch A’ for the previous on-time job; the second term
selects job ¢qp of batch h to be late.

Note that the optimal value function is equal to the smallest value of u for
which

gzglli’rhle (V(nl, RN 2 u,g)) < o0.

In order to determine the computational complexity of the procedure, note
that the number of states that have to be evaluated is again O(nf'n F). Since
each recursive step requires O(F') steps to solve, the time complexity of this
algorithm is O(F?nf*1), which is polynomial for fixed F.

The more general problem 1 | fmls,sgp | >, w;U; can be solved in pseu-
dopolynomial time when F is fixed. This result follows from the fact that Al-
gorithm 4.5.7 can be generalized to minimize the weighted number of late jobs
in O(nf'W) time, where W = 3" wj.

The total tardiness objective ) , T and the total weighted tardiness objective
> w;T; turn out to be considerably harder than the > U; objective.
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4.6 Batch Processing

Consider a machine that can process a number of jobs simultaneously, i.e., a
machine that can process a batch of jobs at the same time. The processing times
of the jobs in a batch may not be all the same and the entire batch is finished
only when the last job of the batch has been completed, i.e., the completion
time of the entire batch is determined by the job with the longest processing
time. This type of machine is fairly common in industry. Consider, for example,
the ”"burn-in” operations in the manufacturing process of circuit boards; these
operations are performed in ovens that can handle many jobs simultaneously.

Let b denote the maximum number of jobs that can be processed in a batch.
Clearly, the case b = 1 refers to the standard scheduling environment considered
in previous sections. It is to be expected that the b = 1 case is easier than the
case b > 2. Another special case that tends to be somewhat easier is the case
b = oo (i.e., there is no limit on the batch size). This case is not uncommon
in practice; it occurs frequently in practice when the items to be produced are
relatively small and the equipment is geared for a high volume. In this section
the case b = oo (or equivalently, b > n) is considered first; several objective
functions are discussed. Subsequently, the case 2 < b < n — 1 is considered;
several objective functions are discussed.

When b = oo the minimization of the makespan is trivial. All jobs are pro-
cessed together and the makespan is the maximum of the n processing times.
However, other objective functions are not that easy. Assume p; < py <

- < pn- An SPT-batch schedule is defined as a schedule in which adja-
cent jobs in the sequence 1,...,n are assembled in batches. For example, a
possible batch schedule for an 8-job problem is a sequence of four batches
({1,2},{3,4,5},{6},{7,8}). The following result holds for 1 | batch(co) | 7
when the objective function + is a regular performance measure.

Lemma 4.6.1. If the objective function v is reqular and the batch size is
unlimited, then the optimal schedule is an SPT-batch schedule.

Proof. The proof is easy and left as an exercise (see Exercise 4.22). a

Consider the model 1 | batch(co) | > w;C;. This problem can be solved
via dynamic programming. Let V' (j) denote the minimum total weighted com-
pletion time of an SPT-batch schedule that contains jobs j,...,n, assuming
that the first batch starts at ¢t = 0. Let V(n + 1) denote the minimum total
weighted completion time of the empty set, which is zero. A backward dynamic
programming procedure can be described as follows.

Algorithm 4.6.2 (Minimizing Total Weighted Completion Time —
Batch Size Infinite)

Initial Condition:

Vin+1)=0
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Recursive Relation:

V(i) = .
(j) k:=j+nl’l,l.1.l.,n+1

(V(k‘) +pro1 Y wh

h=j

N—

Optimal Value Function:

V(1) I

The minimization in the recursive relationship of the dynamic program se-
lects the batch of jobs {j,...,k — 1} with processing time py_; for insertion at
the start of a previously obtained schedule that comprises jobs {k,...,n}. It is
clear that this algorithm is O(n?).

Consider now the model 1 | batch(oo) | Limax. This problem also can be solved
via a backward dynamic programming procedure. Assume again that p; < py <
-+« < pp. Let V(j) denote now the minimum value of the maximum lateness for
SPT-batch schedules containing jobs 7,...,n, assuming their processing starts
at time ¢ = 0.

Algorithm 4.6.3 (Minimizing Maximum Lateness — Batch Size Infi-
nite)
Initial Condition:

Vin+1)= -0

Recursive Relation:

VG) =i (e (V) +picr, | max (o — i)

Optimal Value Function:

V(1) |

The minimization in the recursive relationship assumes that if a batch of
jobs j,...,k — 1 (with processing time pi_1) is inserted at the beginning of a
schedule for jobs k, ..., n, then the maximum lateness of jobs k, ..., n increases
by pr_1, while the maximum lateness among jobs j,...,k —1is

—1 —dn).
h:gl?}’)]iil(l)k 1 n)

This algorithm also operates in O(n?).
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Example 4.6.4 (Minimizing Maximum Lateness — Batch Size
Infinite)

Consider the following scheduling with five jobs, i.e., n = 5.

gobs 1 2 3 4 5

p; 23 8 10 27
di 10 7 6 16 43

The initial condition is V' (6) = —oo. The recursive relationships result in
the following:

V(5) = max(V(6) + ps,ps — d5) = —16.

V(4) = min (maX(V(k) + Pr—1, Z{rlzau>;7l(;z);€,1 — dh)))

=9, .

— min (max(—lG 410,10 — 16) , max(—oo, 11, —16))
= min(—6,11) = —6

P

V(3) = min (max(V(k)erk,l, Imax

k=4,5,6 h

— min (max(fﬁ 48,8~ 6), max(—16+ 10,10 — 6,10 — 16) ,
max(—oo, 27 — 6,27 — 16,27 — 43))
— min(2,4,21) = 2

V) = myin  (max(V(E)+puo,,_gox | (i1 = b))

:min(max(2+3,3— 7), max(—6+8,8—7,8—6)
max(—16 + 10,10 — 7,10 — 6,10 — 16),
max(—o00, 27 — 7,27 — 6,27 — 16,27 — 43))

— min(5,2,4,21) = 2

e

=1,...,

V(1) = k:HQHn . (max(V(k) + Pr_1,

— min (max(4, ~8), max(5, 7, —4) , max(2,~2,1,2),

max(—6,0,3,4, —6) , max(—oo,17,20,21,11, —16))
— min(4,5,2,4,21) = 2

Backtracking yields the following schedule: The fact that the minimum for
V(1) is reached for k = 4 implies that the first three jobs are put together
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in one batch. The minimum for V'(4) is reached for & = 5, implying that job
4 is put in a batch by itself. I

The 1 | batch(co) | Y U; problem is slightly more complicated. In Chapter 3
it was already observed that there is not any backward algorithm for minimizing
the number of late jobs when b = 1. It turns out that no backward algorithm has
been found for the b = oo case either. However, the problem can be solved via
a forward dynamic programming algorithm. Let V (5, u, k) denote the minimum
makespan of an SPT-batch schedule for jobs 1,...,j, with « being the number
of late jobs among these j jobs and the last batch having a processing time py
(implying that this last batch will end up containing also jobs j+1,...,k, but
not job k + 1).

The dynamic program operates in a forward manner and distinguishes be-
tween two cases. First, it considers adding job j to the schedule while assuming
that it does not initiate a new batch, i.e., job j is included in the same batch
as job 7 — 1 and that batch has a processing time py. This processing time py
already contributes to the makespan of the previous state, which may be either
V(j—1u,k)or V(j —1,u—1,k) dependent upon whether job j is on time or
not. If VI(j — 1,u, k) < d;, then job j is on time and (j — 1, u, k) is the previous
state; if V(j —1,u — 1,k) > dj, then job j is late and (j — 1,u — 1,k) is the
previous state.

Second, it considers adding job j to the schedule assuming that it initiates a
new batch. The previous batch ends with job 7 — 1 and the processing time of
the new batch is py. After adding the contribution from the previous state, the
makespan becomes either V(j —1,u,5—1)+pr or V(j—1Lu—1,7—1)+ps
dependent upon whether job j is on time or not. If V(j —1,u,j—1)+pi < dj,
then job j is assumed to be on time and (j — 1,u,j — 1) is the previous state;
if V(j—1l,u—1,j—1)+pg > d;j, then job j is assumed to be tardy and
(j —1,u—1,7 — 1) is the previous state.

Algorithm 4.6.5 (Minimizing Number of Tardy Jobs — Batch Size
Infinite)

Initial Condition:

0, ifk=0,
00, otherwise

V(0,0,k) = {

Recursive Relation:

V(i - Luk), VG- 1uk) <dj,
V(ii—-1u—1,k), fV(ii—-1Lu—1k)>d;,

V(j,u k) =min{ VG~ Luj—1)+pe  if VG~ Luj—1) +pe<dj,
Vi—-lu—-1,j—1)4pe fV({i—-1lu—1,5—1)+ps >dj,
00, otherwise

fO’I”j:17...7’I’L, UZO,...,j7 k:j77’l’L
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Optimal Value Function:

min { u | V(n,u,n) < oo} I

Note that the optimal value function is the smallest value of u for which
V(n,u,n) < oo. This algorithm also operates in O(n?).

Other batch scheduling problems with due date related objective functions
and unlimited batch sizes tend to be harder. For example, 1 | batch(oo) | > T
is NP-Hard in the ordinary sense and can be solved in pseudopolynomial time.

Consider now the class of batch scheduling problems with finite and fixed
batch sizes, i.e., the batch size is b and 2 < b < n — 1. It is to be expected
that scheduling problems with finite and fixed batch sizes are harder than
their counterparts with unlimited batch sizes. For starters, the result regarding
the optimality of SPT-batch schedules when performance measures are regular
(Lemma 4.6.1) does not hold here.

Already, the minimization of the makespan is not as trivial as in the case
of an unlimited batch size. Consider the problem 1 | batch(b) | Chax. It is
clear that in order to minimize the makespan it suffices to determine how the
n jobs are combined with one another and assembled into batches; the order in
which the batches are processed does not affect the makespan. A schedule that
minimizes the makespan consists of N = [(n/b)] batches. In the next algorithm
J denotes at any point in time the set of jobs that remain to be scheduled.

Algorithm 4.6.6 (Minimizing Makespan — Batch Size Finite)
Step 1. (Initialization)

Set J={1,...,n} and k= N.
Step 2. (Batch Assembly)

If k > 1, take from Set J the b jobs with the longest

processing times and put them in batch k.

If k =1, put all jobs still remaining in set J
(i.e., n — (N — 1)b jobs) in one batch and STOP.

Step 3. (Update Counter)

Remove the jobs that have been put in batch k from set J;
reduce k by 1 and return to Step 2. I

So the algorithm starts with the assembly of the b longest jobs in the first
batch; it proceeds with selecting among the remaining jobs the b longest ones
and putting them in a second batch, and so on. If n is not a multiple of b, then
the last batch (containing the shortest jobs) will not be a full batch. So there
exists an optimal schedule with all batches, with the exception of one, being
full. This full-batch property applies only to the makespan objective.

Other objective functions tend to be significantly harder than the makespan
objective. The problem 1 | batch(b) | 3 C; is already not very easy. However,
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some structural results can be obtained. Assume again that the jobs are ordered
such that p; < py < --- < p,. Two batches are said to be not intertwined if
either the longest job in the first batch is smaller than the shortest job in the
second batch or if the shortest job in the first batch is longer than the longest
job in the second batch.

Lemma 4.6.7. There exists an optimal schedule for 1 | batch(b) | > C;
with no two batches intertwined.

Proof. The proof is easy and is left as an exercise (see Exercise 4.23). g

Note that in an SPT-batch schedule for the case b = oo (see Lemma 4.6.1)
no two batches are intertwined either. However, it is clear that the property de-
scribed in Lemma 4.6.7 is weaker than the property described in Lemma 4.6.1
for unlimited batch sizes. Lemma 4.6.1 implies also that in an optimal sched-
ule a batch of jobs with smaller processing times must precede a batch of
jobs with longer processing times. If the batch size is finite, then this is
not necessarily the case. Lemma 4.6.7 may still allow a batch of jobs with
longer processing times to precede a batch of jobs with shorter processing
times. The batch sequence depends now also on the numbers of jobs in the
batches.

Let p(Bx) denote the maximum processing time of the jobs in batch k, i.e.,
p(Bg) is the time required to process batch k. Let |Bj| denote the number of
jobs in batch k. The following lemma describes an important property of the
optimal batch sequence.

Lemma 4.6.8. A batch schedule for 1 | batch(b) | > C; is optimal if and
only if the batches are sequenced in decreasing order of |By|/p(By).

Proof. The proof is easy and similar to the proof of optimality of the WSPT
rule for the total weighted completion time objective when there are no batches
(see Theorem 3.1.1). A batch now corresponds to a job in Theorem 3.1.1. The
processing time of a batch corresponds to the processing time of a job and the
number of jobs in a batch corresponds to the weight of a job. a

Clearly, it may be possible for a batch with a long processing time to precede
a batch with a short processing time; the batch with the long processing time
must then contain more jobs than the batch with the short processing time.

A batch is said to be full if it contains exactly b jobs; otherwise it is non-full.
Batch By, is said to be deferred with respect to batch By if p(Bj) < p(B;) and
By, is sequenced after By.

Lemma 4.6.9. In any optimal schedule, there is no batch that is deferred
with respect to a non-full batch.

Proof. The proof is easy and is left as an exercise (see Exercise 4.24). a

So this lemma basically says that in an optimal schedule no non-full batch
can precede a batch that has a smaller processing time.
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In order to determine the optimal schedule it suffices to consider schedules
that satisfy the properties described above: each batch contains jobs with con-
secutive indices, batches are ordered in decreasing order of |By|/p(By), and no
batch is deferred with respect to a non-full batch. There exists a rather involved
dynamic program for this problem that runs in O(nb(bfl)), i.e., polynomial as
long as the batch size b is fixed. It is also possible to design fairly effective
heuristics using the theoretical properties shown above. A heuristic must as-
semble the jobs in clusters of at most b. It must try to keep the differences in
the processing times of the jobs in a batch somewhat small and then order the
batches in decreasing order of |By|/p(By).

Example 4.6.10 (Minimizing Total Completion Time - Batch Size
Finite)

Consider a machine that allows a maximum batch size of b. Assume there
are k (k < b) jobs with processing time 1 and b jobs with processing time p
(p > 1). If the k jobs with processing time 1 are scheduled first as one batch
followed by a second batch containing the b jobs with processing time p, then
the total completion time is k + b(p + 1). If the two batches are reversed,
then the total completion time is bp 4+ k(p + 1).

The total completion time of the first sequence is lower than the total
completion time of the second sequence when b < kp. It is, of course, easy
to find numerical examples where the second sequence has a lower total
completion time. I

A fair amount of research has also been done on finite batch scheduling with
due date related objectives. However, most finite batch scheduling problems
with due date related objective functions are strongly NP-Hard, including
1| batch(b) | Lmax, 1| batch(b)|> Uj, and 1| batch(b) | T;.

4.7 Discussion

Over the last decade problems with earliness and tardiness penalties have re-
ceived a significant amount of attention. Even more general problems than those
considered in this chapter have been studied. For example, some research has
focused on problems with jobs that are subject to penalty functions such as the
one presented in Figure 4.8.

Because of the importance of multiple objectives in practice a considerable
amount of research has been done on problems with multiple objectives. Of
course, these problems are harder than the problems with just a single objective.
So, most problems with two objectives are NP-hard. These types of problems
may attract in the near future the attention of investigators who specialize in
PTAS and FPTAS.

The makespan minimization problem when the jobs are subject to sequence
dependent setup times turns out to be equivalent to the Travelling Salesman
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hi(C)

Fig. 4.8 Cost function with due date range

Problem. Many combinatorial problems inspired by real world settings are
equivalent to Travelling Salesman Problems. Another scheduling problem that
is discussed in Chapter 6 is also equivalent to the particular Travelling Salesman
Problem described in Section 4.4.

The models in the section focusing on job families are at times also referred
to as batch scheduling models. Every time the machine has to be set up for a
new family it is said that a batch of a particular family is about to start. This
batch of jobs from that family are processed sequentially. This is in contrast to
the setting in the last section where a batch of jobs is processed in parallel on
the batch processing machine.

One fairly important area that has not been covered in this chapter concerns
the class of models in which the processing times of the jobs depend on their
starting times or on their positions in the sequence. Such dependencies may be
due to learning effects or to machine deterioration effects. Recently, a major
research effort has started to focus on this particular area.

Exercises (Computational)
4.1. Consider the following instance with 6 jobs and d = 156.

jgobs 1 2 3 4 5 6
p; 4 18 25 93 102 114

Apply Algorithm 4.1.4 to find a sequence. Is the sequence generated by the
heuristic optimal?

4.2. Consider the following instance with 7 jobs. For each job w} = wj = w;.
However, w; is not necessarily equal to wy.

jobs 1 234 567

p; 47591226
w;, 47591226

All seven jobs have the same due date d = 26. Find all optimal sequences.
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4.3. Consider again the instance of the previous exercise with 7 jobs. Again, for
each job w;» = w}’ = w;. However, w; is not necessarily equal to wj. However,
now the jobs have different due dates.

jobs 1 2 3 4 5 6 7
p; 4 7 5 912 2 6
wj 4 7 5 912 2 6
d; 6 12 24 28 35 37 42

Find the optimal job sequence.

4.4. Give a numerical example of an instance with at most five jobs for which
Algorithm 4.1.4 does not yield an optimal solution.

4.5. Consider the following instance of the 1 || > ijJ(»l), ngx problem.

Find all optimal schedules.

4.6. Consider the following instance of the 1 || L., > ij](?) problem.

jobs 1 2 3 4 5
w;, 4 6 2 420
p; 4 6 2 410
d; 14 18 18 22 0

Find all optimal schedules.

4.7. Apply Algorithm 4.3.2 to the following instance with 5 jobs and generate
the entire trade-off curve.

jobs 1 23 4 5

pj 462 4 2
d;j 24610 10
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4.8. Consider the instance of 1 || 61Lmax + 62) C; in Example 4.3.3. Find
the ranges of 1 and 6 (assuming 6, 4+ 63 = 1) for which each Pareto-optimal
schedule minimizes 61 Lyax + 02 Y C;.

4.9. Consider an instance of the 1 | sjr | Cmax problem with the sequence
dependent setup times being of the form s;; =| ax — b; |. The parameters a,
and by are in the table below. Find the optimal sequence.

citties 0 12 3 45 6

b 3920230 17 6 27
a; 19 44 8 34 16 7 23

4.10. Consider the following instance of 1 | fmls,sgn | > w;C; with F = 2.
The sequence dependent setup times between the two families are s15 = s91 = 2
and sg1 = Sp2 = 0. There are two jobs in family 1 and three jobs in family 2,
i.e., n1 = 2 and ny = 3. The processing times are in the table below:

jobs (1,1) (2,1) (1,2) (2,2) (3,2)

pigy 3 1 1 1 3
wy 272 30 1 1

Apply Algorithm 4.5.2 to find the optimal schedule.

Exercises (Theory)

4.11. Show that in an optimal schedule for an instance of 1 |d; =d | Y E; +
>~ Tj there is no unforced idleness in between any two consecutive jobs.

4.12. Prove Lemma 4.1.1.

4.13. Consider the single machine scheduling problem with objective Y w'E;+
> w"Tj and all jobs having the same due date, i.e., d; = d. Note that the weight
of the earliness penalty w’ is different from the weight of the tardiness penalty
w”, but the penalty structure is the same for each job. Consider an instance
where the due date d is so far out that the machine will not start processing any
job at time zero. Describe an algorithm that yields an optimal solution (i.e., a
generalization of Algorithm 4.1.3).

4.14. Consider the same problem as described in the previous exercise. How-
ever, now the due date is not far out and the machine does have to start pro-
cessing a job immediately at time zero. Describe a heuristic that would yield a
good solution (i.e., a generalization of Algorithm 4.1.4).
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4.15. Consider an instance where each job is subject to earliness and tardiness
penalties and w;» = w;’ = wj for all j. However, w; is not necessarily equal to
wg. The jobs have different due dates. Prove or disprove that EDD minimizes
the sum of the earliness and tardiness penalties.

4.16. Describe the optimal schedule for 1 || ijCJ(»l),Lge)lx and prove its
optimality.

4.17. Describe the optimal schedule for 1 || ijC](-l), ZUJQ) and prove its
optimality.

4.18. Describe the algorithm for 1 || ngX,ijC’]@). That is, generalize
Lemma 4.2.1 and Algorithm 4.2.2.

4.19. Show that the maximum number of Pareto-optimal solutions for 1 ||
01 Z Cj + 0o Lax is n(n — 1)/2.

4.20. Describe the optimal schedule for 1 || 61 Y U; + 62 Linax under the agree-
ability conditions

dy <+ < dp,

and
P1 S Sp'm

4.21. Prove Lemma 4.5.4.
4.22. Prove Lemma 4.6.1.
4.23. Prove Lemma 4.6.7.

4.24. Prove Lemma 4.6.9.

Comments and References

The survey paper by Baker and Scudder (1990) focuses on problems with ear-
liness and tardiness penalties. The text by Baker (1995) has one chapter ded-
icated to problems with earliness and tardiness penalties. There are various
papers on timing algorithms when the optimal order of the jobs is a given; see,
for example, Szwarc and Mukhopadhyay (1995). An algorithm to find the opti-
mal order of the jobs as well as their optimal start times and completion times,
assuming wj = wf = 1 for all 4, is presented by Kim and Yano (1994). For more
results on models with earliness and tardiness penalties, see Sidney (1977), Hall
and Posner (1991), Hall, Kubiak and Sethi (1991), and Wan and Yen (2002).
A fair amount of research has been done on single machine scheduling with
multiple objectives. Some single machine problems with two objectives allow for
polynomial time solutions; see, for example, Emmons (1975), Van Wassenhove
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and Gelders (1980), Nelson, Sarin and Daniels (1986), Chen and Bulfin (1994),
and Hoogeveen and Van de Velde (1995). Potts and Van Wassenhove (1983) as
well as Posner (1985) consider the problem of minimizing the total weighted
completion time with the jobs being subject to deadlines (this problem is
strongly NP-hard). Chen and Bulfin (1993) present a detailed overview of the
state of the art in multi-objective single machine scheduling. The book by
T’kindt and Billaut (2002, 2006) is entirely focused on multi-objective schedul-
ing. Wan and Yen (2009) develop a branch-and-bound as well as a heuristic al-
gorithm for minimizing the sum of the earlinesses subject to a minimum number
of jobs being tardy.

The material in Section 4.4 dealing with the Travelling Salesman Problem
is entirely based on the famous paper by Gilmore and Gomory (1964). For
more results on scheduling with sequence dependent setup times see Bianco,
Ricciardelli, Rinaldi and Sassano (1988), Tang (1990), Wittrock (1990), Mason
and Anderson (1991), and Dunstall, Wirth, and Baker (2000). For a survey of
scheduling problems with setup times, see Allahverdi, Ng, Cheng and Kovalyov
(2008).

Scheduling with the jobs belonging to a given (fixed) number of families
has received a fair amount of attention in the literature. At times, these types
of models have also been referred to as batch scheduling models (since the
consecutive processing of a set of jobs from the same family may be regarded as
a batch). Monma and Potts (1989) discuss the complexity of these scheduling
problems. An excellent overview of the literature on this topic is presented in the
paper by Potts and Kovalyov (2000). Brucker (2004) in his book also considers
this class of models and refers to it as s-batching (batching with jobs processed
in series).

When the machine is capable of processing multiple jobs in parallel, the
machine is often referred to as a batching machine. An important paper con-
cerning batch processing and batching machines is the one by Brucker, Gladky,
Hoogeveen, Kovalyov, Potts, Tautenhahn, and van de Velde (1998). Potts and
Kovalyov (2000) provides for this class of models also an excellent survey.
Brucker (2004) considers this class of models as well and refers to them as
p-batching (batching with jobs processed in parallel).

Biskup (2008) presents a state of the art review of scheduling with learning
effects. Wan and Qi (2010) introduce a new class of models with time-dependent
machining costs.
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A bank of machines in parallel is a setting that is important from both a the-
oretical and a practical point of view. From a theoretical point of view it is
a generalization of the single machine, and a special case of the flexible flow
shop. From a practical point of view, it is important because the occurrence of
resources in parallel is common in the real world. Also, techniques for machines
in parallel are often used in decomposition procedures for multi-stage systems.

In this chapter several objectives are considered. The three principal objec-
tives are the minimization of the makespan, the total completion time, and the
maximum lateness. With a single machine the makespan objective is usually
only of interest when there are sequence dependent setup times; otherwise the
makespan is equal to the sum of the processing times and is independent of
the sequence. When dealing with machines in parallel the makespan becomes
an objective of considerable interest. In practice, one often has to deal with
the problem of balancing the load on machines in parallel; by minimizing the
makespan the scheduler ensures a good balance.

One may actually consider the scheduling of parallel machines as a two step
process. First, one has to determine which jobs have to be allocated to which
machines; second, one has to determine the sequence of the jobs allocated to
each machine. With the makespan objective only the allocation process is im-
portant.

M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 111
DOI 10.1007/978-1-4614-2361-4 5, © Springer Science+Business Media, LLC 2012
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With parallel machines, preemptions play a more important role than with
a single machine. With a single machine preemptions usually only play a role
when jobs are released at different points in time. In contrast, with machines
in parallel, preemptions are important even when all jobs are released at the
same time.

For most models considered in this chapter there are optimal schedules that
are non-delay. However, if there are unrelated machines in parallel and the total
completion time must be minimized without preemptions, then the optimal
schedule may not be non-delay.

Most models considered in this chapter fall in the category of the so-called
offline scheduling problems. In an offline scheduling problem all data (e.g., pro-
cessing times, release dates, due dates) are known in advance and can be taken
into account in the optimization process. In contrast, in an online scheduling
problem, the problem data are not known a priori. The processing time of a
job only becomes known the moment it is completed and a release date only
becomes known the moment a job is released. Clearly, the algorithms for online
scheduling problems tend to be quite different from the algorithms for offline
scheduling problems. The last section in this chapter focuses on online schedul-
ing of parallel machines.

The processing characteristics and constraints considered in this chapter in-
clude precedence constraints as well as the set functions M. Throughout this
chapter it is assumed that py > --- > p,.

5.1 The Makespan without Preemptions

First, the problem Pm || Ciax is considered. This problem is of interest because
minimizing the makespan has the effect of balancing the load over the various
machines, which is an important objective in practice.

It is easy to see that P2 || Cinax is NP-hard in the ordinary sense as it is
equivalent to PARTITION (see Appendix D). During the last couple of decades
many heuristics have been developed for Pm || Cipax. One such heuristic is
described below.

The Longest Processing Time first (LPT) rule assigns at ¢t = 0 the m longest
jobs to the m machines. After that, whenever a machine is freed the longest
job among those not yet processed is put on the machine. This heuristic tries
to place the shorter jobs more towards the end of the schedule, where they can
be used for balancing the loads.

In the next theorem an upper bound is presented for

Cinax(LPT)
Crmax(OPT)’

where Ciax(LPT) denotes the makespan of the LPT schedule and Cy,ax(OPT)
denotes the makespan of the (possibly unknown) optimal schedule. This type
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of worst case analysis is of interest as it gives an indication of how well the
heuristic is guaranteed to perform as well as the type of instances for which the
heuristic performs badly.

Theorem 5.1.1.  For Pm || Crax

Cunax(LPT) _ 4 _ 1
Crnax(OPT) -3 3m

Proof. By contradiction. Assume that there exists one or more counterexamples
with the ratio strictly larger than 4/3 —1/3m. If more than one such counterex-
ample exist, there must exist an example with the smallest number of jobs.
Consider this “smallest” counterexample and assume it has n jobs. This
smallest counterexample has a useful property: under LPT the shortest job is
the last job to start its processing and also the last job to finish its process-
ing. That this is true can be seen as follows: first, under LPT by definition
the shortest job is the last to start its processing. Also, if this job is not the
last to complete its processing, the deletion of this smallest job will result in a
counterexample with fewer jobs (the Cpax(LPT) remains the same while the
Cinax(OPT) may remain the same or may decrease). So for the smallest coun-
terexample the starting time of the shortest job under LPT is Cipax(LPT) — py,.
Since at this point in time all other machines are still busy it follows that

-1
2?21 Dj

Cmax(LPT) — Pn S
m

The right hand side is an upper bound on the starting time of the shortest job.
This upper bound is achieved when scheduling the first n — 1 jobs according to
LPT results in each machine having exactly the same amount of processing to
do. Now

n—1 n
j=1 7j 1 P ¥
Crmax(LPT) < pp + D pa(l— )+ Zﬂ_lpﬁ
m m m
Since :
Cinax(OPT) > 2j=1Ps
m

the following series of inequalities holds for the counterexample:

pn(l—1/m)+ 370 pj/m

41 _ Cua(LPT)
Cinax(OPT)

3 3m  Cuax(OPT) =
_pa(l=1/m) | Xjips/m < (1 =1/m)

1.
Coax(OPT) T Corae(OPT) = Conan(OPT) T
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Thus A ) (1 1/m)
pn - m
— < 1
3 3m  Cupax(OPT) +
and

Cinax(OPT) < 3p,,.

Note that this last inequality is a strict inequality. This implies that for the
smallest counterexample the optimal schedule may result in at most two jobs
on each machine. It can be shown that if an optimal schedule is a schedule with
at most two jobs on each machine then the LPT schedule is optimal and the ratio
of the two makespans is equal to one (see Exercise 5.11.b). This contradiction
completes the proof of the theorem. a

Example 5.1.2 (A Worst Case Example of LPT)

Consider 4 parallel machines and 9 jobs, whose processing times are given in
the table below:

jobs 123456789
p;j 7766055444

Scheduling the jobs according to LPT results in a makespan of 15. It can
be shown easily that for this set of jobs a schedule can be found with a
makespan of 12 (see Figure 5.1). This particular instance is thus a worst case
when there are 4 machines in parallel. I

What would the worst case be, if instead of LPT an arbitrary priority rule
is used? Consider the case where at time ¢ = 0 the jobs are put in an arbitrary
list. Whenever a machine is freed the job that ranks, among the remaining jobs,
highest on the list is put on the machine. It can be shown that the worst case
of this arbitrary list rule satisfies the inequality

Couax (LIST) _, 1
Cmax(OPT) - m'

(This result can be shown via arguments that are similar to the proof of Theo-
rem 5.6.1 in the section on online scheduling.)

However, there are also several other heuristics for the Pm || Ciyax problem
that are more sophisticated than LPT and that have tighter worst-case bounds.
These heuristics are beyond the scope of this book.

Consider now the same problem with the jobs subject to precedence con-
straints, i.e., Pm | prec | Cpax. From a complexity point of view this problem
has to be at least as hard as the problem without precedence constraints. To
obtain some insights into the effects of precedence constraints, a number of
special cases have to be considered. The special case with a single machine
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Cpnax (OPT) = 12

Fig. 5.1 Worst case example of LPT

is clearly trivial. It is enough to keep the machine continuously busy and the
makespan will be equal to the sum of the processing times. Consider the special
case where there are an unlimited number of machines in parallel, or where
the number of machines is at least as large as the number of jobs, i.e., m > n.
This problem may be denoted by Poo | prec | Ciax. This is a classical problem
in the field of project planning and its study has led to the development of
the well-known Critical Path Method (CPM) and Project Evaluation and Re-
view Technique (PERT). The optimal schedule and the minimum makespan are
determined through a very simple algorithm.

Algorithm 5.1.3 (Minimizing the Makespan of a Project)

Schedule the jobs one at a time starting at time zero. Whenever a job has been
completed, start all jobs of which all predecessors have been completed (that
is, all schedulable jobs.) I

That this algorithm leads to an optimal schedule can be shown easily. The
proof is left as an exercise. It turns out that in Poo | prec | Cpax the start of
the processing of some jobs usually can be postponed without increasing the
makespan. These jobs are referred to as the slack jobs. The jobs that cannot be
postponed are referred to as the critical jobs. The set of critical jobs is referred to
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O—G

Fig. 5.2 Precedence constraints graph with critical path in
Example 5.1.4

as the critical path(s). In order to determine the critical jobs, perform the same
procedure applied in Algorithm 5.1.3 backwards. Start at the makespan, which
is now known, and work towards time zero, while adhering to the precedence
relationships. Doing this, all jobs are completed at the latest possible completion
times and therefore started at their latest possible starting times as well. Those
jobs whose earliest possible starting times are equal to their latest possible
starting times are the critical jobs.

Example 5.1.4 (Minimizing the Makespan of a Project)

Consider nine jobs with the following processing times.

jobs 1234567 89
p; 49336828126

The precedence constraints are depicted in Figure 5.2.
The earliest completion time C’]‘ of job j can be computed easily.

jobs 1 234 5 6 7 8 9
C’J‘ 413 36 12 21 32 24 30

This implies that the makespan is 32. Assuming that the makespan is 32,
the latest possible completion times C’j’-’ can be computed.

jobs 1 234 5 6 7 8 9
CY 71636 12 24 32 24 32

Those jobs of which the earliest possible completion times are equal to the
latest possible completion times are said to be on the critical path. So the
critical path is the chain

3—>4—-5—-8—T.
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Level 5 Level 5
Level 4 Level 4
Level 3 Level 3
Level 2 Level 2
Level 1 Level 1

Fig. 5.3 Intree and outtree

The critical path in this case happens to be unique. The jobs that are not
on the critical path are said to be slack. The amount of slack time for job j
is the difference between its latest possible completion time and its earliest
possible completion time. I

In contrast to 1 | prec | Cpax and Poo | prec | Cumax, the Pm | prec |
Chax is strongly NP-hard when 2 < m < n. Even the special case with all
processing times equal to 1, i.e., Pm | p; = 1, prec | Cmax, is not easy. However,
constraining the problem further and assuming that the precedence graph takes
the form of a tree (either an intree or an outtree) results in a problem, i.e.,
Pm | p; = 1,tree | Ciax, that is easily solvable. This particular problem leads
to a well-known scheduling rule, the Critical Path (CP) rule, which gives the
highest priority to the job at the head of the longest string of jobs in the
precedence graph (ties may be broken arbitrarily).

Before presenting the results concerning Pm | p; = 1,tree | Chyax it is
necessary to introduce some notation. Consider an intree. The single job with
no successors is called the root and is located at level 1. The jobs immediately
preceding the root are at level 2; the jobs immediately preceding the jobs at
level 2 are at level 3, and so on. In an outtree all jobs with no successors
are located at level 1. Jobs that have only jobs at level 1 as their immediate
successors are said to be at level 2; jobs that have only jobs at levels 1 and 2 as
their immediate successors are at level 3, and so on (see Figure 5.3). From this
definition it follows that the CP rule is equivalent to the Highest Level first rule.
The number of jobs at level [ is denoted by N (I). Jobs with no predecessors are
referred to as starting jobs; the nodes in the graph corresponding to these jobs
are often referred to in graph theory terminology as leaves. The highest level in
the graph is denoted by lyax. Let

H(lmax +1=7) = 3 N(lmax +1 = k).
k=1



118 5 Parallel Machine Models (Deterministic)

Clearly, H(Imax + 1 — 1) denotes the total number of nodes at level lyax +1—7
or higher, that is, at the highest r levels.

Theorem 5.1.5. The CP rule is optimal for Pm | p; = 1,intree | Cmax
and for Pm | p; = 1, outtree | Crax.

Proof. The proof for intrees is slightly harder than the proof for outtrees. In
what follows only the proof for intrees is given (the proof for outtrees is left as
an exercise). In the proof for intrees a distinction has to be made between two
cases.

Case 1. Assume the tree satisfies the following condition:

(2221 N(lmax +1- k)

r

max
r

)<n

In this case, in every time interval, all the jobs available for processing can be
processed and at most l;,.x time units are needed to complete all the jobs under
the CP rule. But l,ax is clearly a lower bound for C\,.x. So the C'P rule results
in an optimal schedule.

Case II. Find for the tree the (smallest) integer ¢ > 1 such that

Sk N(lmax +1— k)) S N(lmax + 1 — k))

§m<max(
r+c r+c—1

max (
T

<
The ¢ basically represents the smallest amount of time beyond time r needed
to complete all jobs at the r highest levels. Let

Tt Nllma + 1)y _ (z;;; Vs £ 1K)y

max(
r+c—1 r™*+c—1

p
The number of jobs completed at time (r* +¢—1) is at most m(r*+c¢—1). The

number of jobs at levels higher than or equal to lnax +1— 7 is Z;Zl N(lmax +
1—k). As

ZN(lmax—l—l —k)>@0"+c—1)m
k=1

there is at least one job at a level equal to or higher than l.x + 1 — 7* that
is not processed by time 7* 4+ ¢ — 1. Starting with this job there are at least
Imax + 1 —7* time units needed to complete all the jobs. A lower bound for the
makespan under any type of scheduling rule is therefore

Cmax 2 (T* +c— ]-) + (lmax +1-— T*) = lmax +c.

To complete the proof it suffices to show that the CP rule results in a makespan
that is equal to this lower bound. This part of the proof is left as an exercise
(see Exercise 5.14). O
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Fig. 5.4 Worst case example of the CP rule for two machines
(Example 5.1.6)

The question arises: how well does the CP rule perform for arbitrary prece-
dence constraints when all jobs have equal processing times? It has been shown
that for two machines in parallel

Crax(CP) < 4
Crmax(OPT) — 3’

When there are more than two machines in parallel, the worst case ratio is
larger. That the worst case bound can be reached for two machines is shown in
the following example.

Example 5.1.6 (A Worst-Case Example of CP)

Consider 6 jobs with unit processing times and two machines. The precedence
relationships are depicted in Figure 5.4. Jobs 4, 5 and 6 are at level 1, while
jobs 1, 2 and 3 are at level 2. As under the CP rule ties may be broken
arbitrarily, a CP schedule may prescribe at time zero to start with jobs 1
and 2. At their completion only job 3 can be started. At time 2 jobs 4 and 5
are started. Job 6 goes last and is completed by time 4. Of course, an optimal
schedule can be obtained by starting out at time zero with jobs 2 and 3. The
makespan then equals 3. I

Example 5.1.6 shows that processing the jobs with the largest number of
successors first may result in a better schedule than processing the jobs at the
highest level first. A priority rule often used when jobs are subject to arbitrary
precedence constraints is indeed the so-called Largest Number of Successors first
(LNS) rule. Under this rule the job with the largest total number of successors
(not just the immediate successors) in the precedence constraints graph has the
highest priority. Note that in the case of intrees the CP rule and the LNS rule
are equivalent; the LNS rule therefore results in an optimal schedule in the case
of intrees. It can be shown fairly easily that the LNS rule is also optimal for
Pm | p; = 1,outtree | Cpax. The following example shows that the LNS rule
may not yield an optimal schedule with arbitrary precedence constraints.
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O—0 ;

Fig. 5.5 The LNS rule is not necessarily optimal with arbitrary
precedence constraints (Example 5.1.7)

Example 5.1.7 (Application of the LNS rule)

Consider 6 jobs with unit processing times and two machines. The precedence
constraints are depicted in Figure 5.5. The LNS rule may start at time 0 with
jobs 4 and 6. At time 1 jobs 1 and 5 start. Job 2 starts at time 2 and job
3 starts at time 3. The resulting makespan is 4. It is easy to see that the
optimal makespan is 3 and that the CP rule actually achieves the optimal
makespan. I

Both the CP rule and the LNS rule have more generalized versions that
can be applied to problems with arbitrary job processing times. Instead of
counting the number of jobs (as in the case with unit processing times), these
more generalized versions prioritize based on the total amount of processing
remaining to be done on the jobs in question. The CP rule then gives the
highest priority to the job that is heading the string of jobs with the largest
total amount of processing (with the processing time of the job itself also being
included in this total). The generalization of the LNS rule gives the highest
priority to that job that precedes the largest total amount of processing; again
the processing time of the job itself is also included in the total. The LNS name
is clearly not appropriate for this generalization with arbitrary processing times,
as it refers to a number of jobs rather than to a total amount of processing.

Another generalization of the Pm || Cpax problem that is of practical interest
arises when job j is only allowed to be processed on subset M; of the m parallel
machines. Consider Pm | p; = 1, M, | Ciax and assume that the sets M; are
nested, that is, one and only one of the following four conditions holds for jobs
7 and k.

(i) M; is equal to My, (M; = My)
(ii) M; is a subset of My, (M; C My)
(ili) My is a subset of M; (M), C M)
(iv) M; and Mj, do not overlap (M; N M, = 0)
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Under these conditions a well-known dispatching rule, the Least Flexible Job
first (LEJ) rule, plays an important role. The LFJ rule selects, every time a
machine is freed, among the available jobs the job that can be processed on the
smallest number of machines, i.e., the least flexible job. Ties may be broken
arbitrarily. This rule is rather crude as it does not specify, for example, which
machine should be considered first when several machines become available at
the same time.

Theorem 5.1.8. The LFJ rule is optimal for Pm | p; = 1,M; | Cmax
when the M; sets are nested.

Proof. By contradiction. Suppose the LFJ rule does not yield an optimal sched-
ule. Consider a schedule that is optimal, and that differs from a schedule that
could have been generated via the LFJ rule. Without loss of generality, the jobs
on each machine can be ordered in increasing order of | M; |. Now consider
the earliest time slot that is filled by a job that could not have been placed
there by the LFJ rule. Refer to this job as job j. There exists some job, say
job 7%, that is scheduled to start later, and that could have been scheduled by
LFJ in the position taken by job j. Note that job j* is less flexible than job
Jj (since M; D M; «). Job j* cannot start before job j, since j is the earliest
non-LFJ job. It cannot start at the same time as job j, for in that case job j is
in a position where LFJ could have placed it. These two jobs, j and j*, can be
exchanged without altering Crax, since p; = 1 for all jobs. Note that the slot
previously filled by j is now filled by j*, which is an LFJ position. By repeat-
ing this process of swapping the earliest non-LFJ job, all jobs can be moved
into positions where they could have been placed using LFJ, without increasing
Chuax- So it is possible to construct an LFJ schedule from an optimal schedule.
This establishes the contradiction. O

It can be shown easily that the LFJ rule is optimal for P2 | p; = 1, M; | Cmax
because with two machines the M, sets are always nested. However, with three
or more machines the LFJ rule may not yield an optimal solution for Pm | p; =
1, M, | Cmax with arbitrary M;, as illustrated in the following example.

Example 5.1.9 (Application of the LFJ Rule)
Consider P4 | p; =1, M, | Cmax with eight jobs. The eight M; sets are:

My, ={1,2}

My = M3 = {1, 3,4}
My = {2}
Ms = Mg = My = Mg = {3,4}

The M; sets are clearly not nested. Under the LFJ rule the machines can
be considered in any order. Consider machine 1 first. The least flexible job
that can be processed on machine 1 is job 1 as it can be processed on only
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two machines (jobs 2 and 3 can be processed on three machines). Consider
machine 2 next. The least flexible job to be processed on machine 2 is clearly
job 4. Least flexible jobs to be processed on machines 3 and 4 at time 0
could be jobs 5 and 6. At time 1, after jobs 1, 4, 5 and 6 have completed
their processing on the four machines, the least flexible job to be processed
on machine 1 is job 2. However, at this point none of the remaining jobs can
be processed on machine 2; so machine 2 remains idle. The least flexible jobs
to go on machines 3 and 4 are jobs 7 and 8. This implies that job 3 only can
be started at time 2, completing its processing at time 3. The makespan is
therefore equal to 3.

A better schedule with a makespan equal to 2 can be obtained by assigning
jobs 2 and 3 to machine 1; jobs 1 and 4 to machine 2; jobs 5 and 6 to machine 3
and jobs 7 and 8 to machine 4. I

From Example 5.1.9 one may expect that, if a number of machines are free
at the same point in time, it is advantageous to consider first the least flexible
machine. The flexibility of a machine could be defined as the number of re-
maining jobs that can be processed (or the total amount of processing that can
be done) on that machine. Assigning at each point in time first a job, any job,
to the Least Flexible Machine (LFM), however, does not guarantee an optimal
schedule in the case of Example 5.1.9.

Heuristics can be designed that combine the LFJ rule with the LFM rule,
giving priority to the least flexible jobs on the least flexible machines. That is,
consider at each point in time first the Least Flexible Machine (LFM) (that is,
the machine that can process the smallest number of jobs) and assign to this
machine the least flexible job that can be processed on it. Any ties may be
broken arbitrarily. This heuristic may be referred to as the LEM-LFJ heuristic.
However, in the case of Example 5.1.9 the LFM-LFJ does not yield an optimal
schedule either.

5.2 The Makespan with Preemptions

Consider the same problem as the one discussed in the beginning of the previous
section, but now with preemptions allowed, i.e., Pm | prmp | Cpax. Usually, but
not always, allowing preemptions simplifies the analysis of a problem. This is
indeed the case for this problem where it actually turns out that many schedules
are optimal. First, consider the following linear programming formulation of the
problem.

minimize  Crax
subject to

m
Zl’ij:pj, j:].,...,n
i=1
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m
> 2 <Cmax  j=1...,n
i=1

n
Zfrij Scmaxa z':l,...,m
i=1

l’ljzo z:l,,m, jil,,n

The variable z;; represents the total time job j spends on machine i. The
first set of constraints makes sure that each job receives the required amount
of processing. The second set of constraints ensures that the total amount of
processing each job receives is less than or equal to the makespan. The third
set makes sure that the total amount of processing on each machine is less
than the makespan. Since the Chax basically is a decision variable and not an
element of the resource vector of the linear program, the second and third set
of constraints may be rewritten as follows:

m
Cmax_zmijzoy j:17-~-7n
i=1

n
Cmax_§ xz‘jZQ t=1,....,m
Jj=1

Example 5.2.1 (LP Formulation for Minimizing Makespan with
Preemptions)

Consider two machines and three jobs with p;1 = 8, py = 7 and p3 = 5.
There are thus 7 variables, namely x11, T21, T12, T23, 13, 23 and Chax
(see Appendix A). The A matrix is a matrix of 0’s and 1’s. The ¢ vector
contains six 0’s and a single 1. The b vector contains the three processing
times and five 0’s. I

This LP can be solved in polynomial time, but the solution of the LP does
not prescribe an actual schedule; it merely specifies the amount of time job
7 should spend on machine 7. However, with this information a schedule can
easily be constructed.

There are several other algorithms for Pm | prmp | Cpax. One of these
algorithms is based on the fact that it is easy to obtain an expression for the
makespan under the optimal schedule. In the next lemma a lower bound is
established.

Lemma 5.2.2.  Under the optimal schedule for Pm | prmp | Ciax

n
CVmax 2> max (ph ij/m) = Crtlax'

j=1



124 5 Parallel Machine Models (Deterministic)

Proof. Recall that job 1 is the job with the longest processing time. The proof
is easy and left as an exercise. O

Having a lower bound allows for the construction of a very simple algorithm
that minimizes the makespan. The fact that this algorithm actually produces
a schedule with a makespan that is equal to the lower bound shows that the
algorithm yields an optimal schedule.

Algorithm 5.2.3 (Minimizing Makespan with Preemptions)
Step 1.

Take the n jobs and process them one after another on a single machine
in any sequence. The makespan is then equal to the sum of the n
processing times and is less than or equal to mC';

max-’

Step 2.

Take this single machine schedule and cut it into m parts. The first part
constitutes the interval [0, C% .. |, the second part the interval

max
[ Cfaxs 2CE . |, the third part the interval [2C} .., 3Ck. ], etc.

max’ max

Step 3.

Take as the schedule for machine 1 in the bank of parallel machines
the processing sequence of the first interval; take as the schedule for
machine 2 the processing sequence of the second interval, and so on. I

It is obvious that the resulting schedule is feasible. Part of a job may appear
at the end of the schedule for machine ¢, while the remaining part may appear
at the beginning of the schedule for machine i + 1. As preemptions are allowed
and the processing time of each job is less than C} .. such a schedule is feasible.
As this schedule has Chax = C}h ., it is also optimal.

Another schedule that may appear appealing for Pm | prmp | Cpax is the
Longest Remaining Processing Time first (LRPT) schedule. This schedule is the
preemptive counterpart of the (nonpreemptive) LPT schedule. It is a schedule
that is structurally appealing, but mainly of academic interest. From a theoret-
ical point of view it is important because of similarities with optimal policies in
stochastic scheduling (see Chapter 12). From a practical point of view it has a
serious drawback. The number of preemptions needed in the deterministic case
is usually infinite.

Example 5.2.4 (Application of the LRPT Rule)

Consider 2 jobs with unit processing times and a single machine. Under
LRPT the two jobs continuously have to rotate and wait for their next turn
on the machine (that is, a job stays on the machine for a time period e
and after every time period € the job waiting preempts the machine). The
makespan is equal to 2 and is, of course, independent of the schedule. But
note that the sum of the two completion times under LRPT is 4, while under
the nonpreemptive schedule it is 3. I
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In the subsequent lemma and theorem a proof technique is used that is
based on a discrete time framework. All processing times are assumed to be
integer and the decision-maker is allowed to preempt any machine only at in-
teger times 1,2,... The proof that LRPT is optimal is based on a dynamic
programming induction technique that requires some special notation. Assume
that at some integer time ¢ the remaining processing times of the n jobs are
p1(t),p2(t),...,pn(t). Let p(¢) denote this vector of processing times. In the
proof two different vectors of remaining processing times at time ¢, say p(t)
and q(t), are repeatedly compared to one another. The vector p(t) is said to
magjorize the vector q(t), p(t) >m q(t), if

k k
2P0 = ap)(®),

j=

for all & = 1,...,n, where p(;(t) denotes the jth largest element of vector
p(t) and q(;)(t) denotes the jth largest element of vector g(t).

Example 5.2.5 (Vector Majorization)

Consider the two vectors p(t) = (4,8,2,4) and ¢(t) = (3,0,6,6). Rearranging
the elements within each vector and putting these in decreasing order results
in vectors (8,4,4,2) and (6,6,3,0). It can be verified easily that p(t) >, q(¢).

Lemma 5.2.6. If p(t) >, q(t) then LRPT applied to p(t) results in a
makespan that is larger than or equal to the makespan obtained by applying
LRPT to q(t).

Proof. The proof is by induction on the total amount of remaining processing.
In order to show that the lemma holds for p(t) and g(t), with total remaining
processing time Y7, p;(t) and 37, ¢;(t) respectively, assume as induction
hypothesis that the lemma holds for all pairs of vectors with total remaining
processing less than or equal to Z;Lzl pj(t) — 1 and Z?Zl q;(t) — 1 respec-
tively. The induction base can be checked easily by considering the two vectors
1,0,...,0 and 1,0,...,0.

If LRPT is applied for one time unit on p(t) and ¢(t), respectively, then the
vectors of remaining processing times at time ¢ + 1 are p(t + 1) and g(¢t + 1),
respectively. Clearly,

and
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It can be shown that if p(t) >,, g(t), then p(t + 1) >,, q(t + 1). So if LRPT
results in a larger makespan at time t + 1 because of the induction hypothesis,
it also results in a larger makespan at time t.

It is clear that if there are less than m jobs remaining to be processed, the
lemma holds. O

Theorem 5.2.7. LRPT vyields an optimal schedule for Pm | prmp | Cinax
in discrete time.

Proof. The proof is based on induction as well as on contradiction arguments.
The first step of the induction is shown as follows. Suppose not more than
m jobs have processing times remaining and that these jobs all have only one
unit of processing time left. Then clearly LRPT is optimal.
Assume LRPT is optimal for any vector p(¢) for which

n
> ppt) SN -1,
j=1

Consider now a vector p(t) for which

> p(t)=N.
j=1

The induction is based on the total amount of remaining processing, N — 1, and
not on the time ¢.

In order to show that LRPT is optimal for a vector of remaining processing
times p(t) with a total amount of remaining processing Z?Zl p;j(t) = N, assume
that LRPT is optimal for all vectors with a smaller total amount of remaining
processing. The proof of the induction step, showing that LRPT is optimal for
p(t), is by contradiction. If LRPT is not optimal, another rule has to be optimal.
This other rule does not act according to LRPT at time ¢, but from time ¢ + 1
onwards it must act according to LRPT because of the induction hypothesis
(LRPT is optimal from ¢ + 1 on as the total amount of processing remaining
at time ¢ + 1 is strictly less than N). Call this supposedly optimal rule, which
between ¢ and ¢ + 1 does not act according to LRPT, LRPT’. Now applying
LRPT at time ¢ on p(t) must be compared to applying LRPT’ at time ¢ on
the same vector p(t). Let p(t + 1) and p'(t + 1) denote the vectors of remaining
processing times at time ¢ + 1 after applying LRPT and LRPT’. It is clear that

Pt+1) >, pt+1).

From Lemma 5.2.6 it follows that the makespan under LRPT” is larger than
the makespan under LRPT. This completes the proof of the induction step and
the proof of the theorem. m]
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Fig. 5.6 LRPT with three jobs on two machines with preemptions
allowed at integer points in time (Example 5.2.8)

| 1 | 1,2,3 |

|2| 2,3 | 1,2,3 |

\ \ \
0 5 10 t

Fig. 5.7 LRPT with three jobs on two machines with preemptions
allowed at any time (Example 5.2.9)

Example 5.2.8 (Application of LRPT in Discrete Time)

Consider two machines and three jobs, say jobs 1, 2 and 3, with processing
times 8, 7 and 6. The schedule under LRPT is depicted in Figure 5.6 and
the makespan is 11. I

That LRPT is also optimal in continuous time (resulting in an infinite num-
ber of preemptions) can be argued easily. Multiply all processing times by K,
K being a very large integer. The problem intrinsically does not change, as the
relative lengths of the processing times remain the same. The optimal policy is,
of course, again LRPT. But now there may be many more preemptions (recall
preemptions must occur at integral time units). Basically, multiplying all pro-
cessing times by K has the effect that the time slots become smaller relative to
the processing times and the decision-maker is allowed to preempt after shorter
intervals. Letting K go to oo shows that LRPT is optimal in continuous time
as well.

Example 5.2.9 (Application of LRPT in Continuous Time)

Consider the same jobs as in the previous example. As preemptions may be
done at any point in time, processor sharing takes place, see Figure 5.7. The
makespan is now 10.5. I

Consider the generalization to uniform machines, that is, m machines in
parallel with machine ¢ having speed v;. Without loss of generality it may be
assumed that v1 > vy > -+ > v,,. Similar to Lemma 5.2.2 a lower bound can
be established for the makespan here as well.
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Lemma 5.2.10. Under the optimal schedule for Qm | prmp | Ciax

o ( p1 P+ D2 Yt b )
‘max > Max , sy —me1 m
v1 v+ U2 Yo v D i Vi
Proof. The makespan has to be at least as large as the time it takes for the
fastest machine to do the longest job. This time represents the first term within
the “max” on the R.H.S. The makespan also has to be at least as large as the
time needed for the fastest and second fastest machine to process the longest
and second longest job while keeping the two machines occupied exactly the
same amount of time. This amount of time represents the second term within
the “max” expression. The remainder of the first m — 1 terms are determined in
the same way. The last term is a bit different as it is the minimum time needed
to process all n jobs on the m machines while keeping all the m machines
occupied exactly the same amount of time. a

If the largest term in the lower bound is determined by the sum of the
processing times of the k longest jobs divided by the sum of the speeds of the
k fastest machines, then the n — k smallest jobs under the optimal schedule do
not receive any processing on the k fastest machines; these jobs only receive
processing on the m — k slowest machines.

Example 5.2.11 (Minimizing Makespan on Uniform Machines)

Consider three machines, 1, 2 and 3, with respective speeds 3, 2 and 1. There
are three jobs, 1, 2 and 3, with respective processing times 36, 34 and 12. The
optimal schedule assigns the two longest jobs to the two fastest machines.
Job 1 is processed for 8 units of time on machine 1 and for 6 units of time
on machine 2, while job 2 is processed for 8 units of time on machine 2 and
for 6 units of time on machine 1. These two jobs are completed after 14 time
units. Job 3 is processed only on machine 3 and is completed at time 12. ||

A generalization of the LRPT schedule described before is the so-called
Longest Remaining Processing Time on the Fastest Machine first (LRPT-FM)
rule. This rule assigns, at any point in time, the job with the longest remain-
ing processing time to the fastest machine; the job with the second longest
remaining processing time to the second fastest machine, and so on.

This rule typically requires an infinite number of preemptions. If at time ¢
two jobs have the same remaining processing time and this processing time is
the longest among the jobs not yet completed by time ¢, then one of the two
jobs has to go on the fastest machine while the other has to go on the second
fastest. At time ¢ + €, € being very small, the remaining processing time of the
job on the second fastest machine is longer than the remaining processing time
of the job on the fastest machine. So the job on the second fastest machine has
to move to the fastest and vice versa. Thus the LRPT-FM rule often results in
so-called processor sharing. A number of machines, say m*, process a number
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of jobs, say n*, n* > m*; the machines allocate their total processing capability
uniformly over the n* jobs and ensure that the remaining processing times of
the n* jobs remain equal at all times.

It can be shown that the LRPT-FM rule is indeed optimal for Qm | prmp |
Chax- In addition, it can be shown that applying LRPT-FM to the available
jobs when the jobs have different release dates is optimal as well (i.e., @m |
7j,prmp | Crmax). However, the proofs of these results are quite technical and
lie beyond the scope of this book.

5.3 The Total Completion Time without Preemptions

Consider m machines in parallel and n jobs. Recall that p; > -+ > p,. The
objective to be minimized is the total unweighted completion time ) C;. From
Theorem 3.1.1 it follows that for a single machine the Shortest Processing Time
first (SPT) rule minimizes the total completion time. This single machine result
can also be shown in a different way fairly easily.

Let p(;) denote the processing time of the job in the jth position in the
sequence. The total completion time can then be expressed as

> Ci=npay+ (0= Dby + -+ + 2Py + Do)

This implies that there are n coefficients n,n — 1,...,1 to be assigned to n
different processing times. The processing times have to be assigned in such a
way that the sum of the products is minimized. From the elementary Hardy,
Littlewood and Polya inequality as well as common sense it follows that the
highest coefficient, n, is assigned the smallest processing time, p,, the second
highest coefficient, n — 1, is assigned the second smallest processing time, p,_1,
and so on. This implies that SPT is optimal.

This type of argument can be extended to the parallel machine setting as
well.

Theorem 5.3.1. The SPT rule is optimal for Pm || > C;.

Proof. In the case of parallel machines there are nm coefficients to which pro-
cessing times can be assigned. These coefficients are m n's, m (n —1)’s, ..., m
ones. The processing times have to be assigned to a subset of these coefficients
in order to minimize the sum of the products. Assume that n/m is an integer. If
it is not an integer add a number of dummy jobs with zero processing times so
that n/m is integer (adding jobs with zero processing times does not change the
problem; these jobs would be instantaneously processed at time zero and would
not contribute to the objective function). It is easy to see, in a similar manner
as above, that the set of m longest processing times have to be assigned to the
m ones, the set of second m longest processing times have to be assigned to
the m twos, and so on. This results in the m longest jobs each being processed
on different machines and so on. That this class of schedules includes SPT can
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be shown as follows. According to the SPT schedule the smallest job has to go
on machine 1 at time zero, the second smallest one on machine 2, and so on;
the (m 4+ 1)th smallest job follows the smallest job on machine 1, the (m + 2)th
smallest job follows the second smallest on machine 2, and so on. It is easy to
verify that the SPT schedule corresponds to an optimal assignment of jobs to
coefficients. O

From the proof of the theorem it is clear that the SPT schedule is not the
only schedule that is optimal. Many more schedules also minimize the total
completion time. The class of schedules that minimize the total completion
time turns out to be fairly easy to characterize (see Exercise 5.21).

As pointed out in the previous chapter the more general WSPT rule mini-
mizes the total weighted completion time in the case of a single machine. Un-
fortunately, this result cannot be generalized to parallel machines, as shown in
the following example.

Example 5.3.2 (Application of the WSPT Rule)

Consider two machines and three jobs.

Scheduling jobs 1 and 2 at time zero and job 3 at time 1 results in a total
weighted completion time of 14, while scheduling job 3 at time zero and jobs
1 and 2 on the other machine results in a total weighted completion time
of 12. Clearly, with this set of data any schedule may be considered to be
WSPT. However, making the weights of jobs 1 and 2 equal to 1 — € shows
that WSPT does not necessarily yield an optimal schedule. I

It has been shown in the literature that the WSPT heuristic is nevertheless a
very good heuristic for the total weighted completion time on parallel machines.
A worst case analysis of this heuristic yields the lower bound

S s (OPT) < o, (1+V2).

What happens now in the case of precedence constraints? The problem
Pm | prec | Y C; is known to be strongly NP-hard in the case of arbitrary
precedence constraints. However, the special case with all processing times equal
to 1 and precedence constraints that take the form of an outtree can be solved

in polynomial time. In this special case the Critical Path rule again minimizes
the total completion time.
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Theorem 5.3.3.  The CP rule is optimal for Pm | p; = 1, outtree | Y C;.

Proof. Up to some integer point in time, say t1, the number of schedulable jobs
is less than or equal to the number of machines. Under the optimal schedule, at
each point in time before ¢1, all schedulable jobs have to be put on the machines.
Such actions are in accordance with the CP rule. Time t; is the first point in
time when the number of schedulable jobs is strictly larger than m. There are
at least m 4 1 jobs available for processing and each one of these jobs is at the
head of a subtree that includes a string of a given length.

The proof that applying CP from t; is optimal is by contradiction. Suppose
that after time t; another rule is optimal. This rule must, at least once, prescribe
an action that is not according to CP. Consider the last point in time, say t2, at
which this rule prescribes an action not according to CP. So at t5 there are m
jobs, that are not heading the m longest strings, assigned to the m machines;
from t5 + 1 the CP rule is applied. Call the schedule from ¢, onwards CP’. It
suffices to show that applying CP from t, onwards results in a schedule that is
at least as good.

Consider under CP’ the longest string headed by a job that is not assigned
at to, say string 1, and the shortest string headed by a job that is assigned at
to, say string 2. The job at the head of string 1 has to start its processing under
CP’ at time t3 + 1. Let Cf and C} denote the completion times of the last jobs
of strings 1 and 2, respectively, under CP’. Under CP’ C] > C}. It is clear that
under CP’ all m machines have to be busy at least up to C4 — 1. If C1 > C5+ 1
and there are machines idle before C] — 1, the application of CP at to results
in less idle time and a smaller total completion time. Under CP the last job of
string 1 is completed one time unit earlier, yielding one more completed job at
or before C] — 1. In other cases the total completion time under CP is equal
to the total completion time under CP’. This implies that CP is optimal from
ty on. As there is not then a last time for a deviation from CP, the CP rule is
optimal. g

In contrast to the makespan objective the CP rule is, somewhat surprisingly,
not necessarily optimal for intrees. Counterexamples can be found easily (see
Exercise 5.24).

Consider the problem Pm | p; = 1,M; | > C;. Again, if the M; sets are
nested the Least Flexible Job first rule can be shown to be optimal.

Theorem 5.3.4. The LFJ rule is optimal for Pm | p; = 1,M; | > C;
when the M; sets are nested.

Proof. The proof is similar to the proof of Theorem 5.1.8. a

The previous model is a special case of Rm || > C;. As stated in Chapter 2,
the machines in the Rm environment are entirely unrelated. That is, machine
1 may be able to process job 1 in a short time and may need a long time for
job 2, while machine 2 may be able to process job 2 in a short time and may
need a long time for job 1. That the @m environment is a special case is clear.
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Identical machines in parallel with job j being restricted to machine set M; is
also a special case; the processing time of job j on a machine that is not part
of M; has to be considered very long making it therefore impossible to process
the job on such a machine.

The Rm || > C; problem can be formulated as an integer program with
a special structure that makes it possible to solve the problem in polynomial
time. Recall that if job j is processed on machine i and there are k — 1 jobs
following job j on this machine ¢, then job j contributes kp;; to the value of
the objective function. Let x;;; denote 0 — 1 integer variables, where x;;; = 1
if job j is scheduled as the kth to last job on machine ¢ and 0 otherwise. The
integer program is then formulated as follows:

m n n
minimize E E E kpijxin;

i=1 j=1 k=1

subject to
m n
SN i =1, j=1,....n
i=1 k=1

n

D @y <1, i=1,...,m, k=1,...,n

j=1

zikj € {0,1}, i=1,....m, k=1,....n j7=1,...,n

The constraints make sure that each job is scheduled exactly once and each
position on each machine is taken by at most one job. Note that the processing
times only appear in the objective function.

This is a so-called weighted bipartite matching problem with on one side the
n jobs and on the other side nm positions (each machine can process at most n
jobs). If job j is matched with (assigned to) position ik there is a cost kp;;. The
objective is to determine the matching in this so-called bipartite graph with
a minimum total cost. It is known from the theory of network flows that the
integrality constraints on the x;;; may be replaced by nonnegativity constraints
without changing the feasible set. This weighted bipartite matching problem
then reduces to a regular linear program for which there exist polynomial time
algorithms. (see Appendix A).

Note that the optimal schedule does not have to be a non-delay schedule.

Example 5.3.5 (Minimizing Total Completion Time with Unrelated
Machines)

Consider 2 machines and 3 jobs. The processing times of the three jobs on
the two machines are presented in the table below.
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Jobj
3pa1 P13
2,
T 2 3pn
P P12 h
P 2py 3p, P2 P22 P23

Position
i,k

Fig. 5.8 Bipartite graph for Rm || 3 C; with three jobs

jobs 1 2 3
DP1j 453
D2j 89 3

The bipartite graph associated with this problem is depicted in Figure 5.8.
According to the optimal schedule machine 1 processes job 1 first and
job 2 second. Machine 2 processes job 3. This solution corresponds to
121 = T112 = ¥213 = 1 and all other z;;; equal to zero. This optimal
schedule is not non-delay (machine 2 is freed at time 3 and the waiting job
is not put on the machine). I

5.4 The Total Completion Time with Preemptions

In Theorem 5.3.1 it is shown that the nonpreemptive SPT rule minimizes Y, C;
in a parallel machine environment. It turns out that the nonpreemptive SPT
rule is also optimal when preemptions are allowed. This result is a special case
of the more general result described below.

Consider m machines in parallel with different speeds, i.e., Qm | prmp |
>~ C;. This problem leads to the so-called Shortest Remaining Processing Time
on the Fastest Machine (SRPT-FM) rule. According to this rule at any point
in time the job with the shortest remaining processing time is assigned to the
fastest machine, the second shortest remaining processing time on the second
fastest machine, and so on. Clearly, this rule requires preemptions. Every time
the fastest machine completes a job, the job on the second fastest machine
moves to the fastest machine, the job on the third fastest machine moves to the
second fastest machine, and so on. So, at the first job completion there are m—1
preemptions, at the second job completion there are m — 1 preemptions, and
so on until the number of remaining jobs is less than the number of machines.
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From that point in time the number of preemptions is equal to the number of
remaining jobs.
The following lemma is needed for the proof.

Lemma 5.4.1.  There exists an optimal schedule under which C; < Cj
when p; < pr for all j and k.

Proof. The proof is left as an exercise. a

Without loss of generality it may be assumed that there are as many machines
as jobs. If the number of jobs is smaller than the number of machines then the
m — n slowest machines are disregarded. If the number of jobs is larger than
the number of machines, then n — m machines are added with zero speeds.

Theorem 5.4.2. The SRPT-FM rule is optimal for Qm | prmp | >~ C;.

Proof. Under SRPT-FM C,, < Cp,_1 < --- < (. It is clear that under SRPT-
FM the following equations have to be satisfied:

v1C, = DPn
U2Cn + Ul(cnfl - C’n) = Pn-1
v3Cp + UQ(Cn—l - Cn) + Ul(Cn—Q - Cn—l) = Pn—2

vnCp + vn—l(cn—l - Cn) +--F+ v (Cl - 02) =D
Adding these equations yields the following set of equations.

v1C, = Pn
U2Cn + Ulcnfl = Pn +Pn—1
30, + 1201 +v1Ch—2 = pn + Dn—1 + Pn—2

UaCn +n-1Cp1 + - +01C1 =pp +Pp1+ -+ 1
Suppose schedule &’ is optimal. From the previous lemma it follows that
C,<Cp_y <. <O
The shortest job cannot be completed before p,, /vy, i.e., C/, > pn /v or
v1C), > pp.
Given that jobs n and n — 1 are completed at C], and C},_;,

(v1 +v2)C;, +v1(C—y — Cy)
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is an upper bound on the amount of processing that can be done on these two
jobs. This implies that

120, +v1Ch_1 > pr + Pro1.
Continuing in this manner it is easy to show that
ukC, + 0101+ -+ 010 1 = Pr D1+ F Pkt
So

01 C, > 010,
/UQC;L + UlC’:L—l Z UQCn + vlcn—l

0, O + vp—1Ch_y + -+ 0v10] > 0,Cp + 0y 1Cr1 + -+ 01Ch

If a collection of positive numbers o; can be found, such that multiplying the jth
inequality by a; and adding all inequalities yields the inequality > C} > > Cj,
then the proof is complete. It can be shown that these a; must satisfy the
equations

v + Ve + -+ v, =1

v +voay + 0+ V1o = 1

V1O = 1

As vy > vy > -+ > v, such a collection does exist. O

Example 5.4.3 (Application of the SRPT-FM Rule)

Consider 4 machines and 7 jobs. The machine data and job data are contained
in the two tables below.

machines 1 2 3 4
v; 4221

jobs 1 2 3 4 5 6 7
p; 8 16 34 40 45 46 61

Assuming that preemptions are allowed only at integer points in time, the
SRPT-FM rule results in the schedule depicted in Figure 5.9. Under this
optimal schedule the total completion time is 116. I
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Ci=2 C,=5  Ci=11 C,=16 Cs=21 Cy=26 C,=35
Machine 1 | 1] 2 3 4 5 6 7
Machine 2 | 2 3 4 5 6 7
Machine 3 | 3] 4 5 6 7
Machine 4 | 4] s 6 7
\ \ \ \ \ \ \ \
0 5 10 15 20 25 30 35 1

Fig. 5.9 The SRPT-FM schedule (Example 5.4.3)

5.5 Due Date Related Objectives

Single machine problems with due date related objectives that are solvable in
polynomial time typically have the maximum lateness as objective, e.g., 1 ||
Limax, 1| prmp | Lmax and 1 | 75, prmp | Lmax. Single machine problems with
the total tardiness or the total weighted tardiness as objective tend to be very
hard.

It is easy to see that from a complexity point of view Pm || Lpax is not
as easy as 1 || Lynax. Consider the special case where all jobs have due date 0.
Finding a schedule with a minimum L,y is equivalent to Pm || Chax and is
therefore NP-hard.

Consider @m | prmp | Lyax. This problem is one of the few parallel machine
scheduling problems with a due date related objective that is solvable in poly-
nomial time. Suppose one has to verify whether there exists a feasible schedule
with Lyax = 2. This implies that for job j the completion time C; has to be
less than or equal to d; + 2. Let d; + 2 be a hard deadline Jj. Finding a feasi-
ble schedule with all jobs completing their processing before these deadlines is
equivalent to solving the problem Qm | rj,prmp | Ciax. In order to see this,
reverse the direction of time in the due date problem. Apply the LRPT-FM
rule starting with the last deadline and work backwards. The deadlines in the
original problem play the role of the release dates in the reversed problem that
is then equivalent to Qm | 7;,prmp | Cmax. If applying the LRPT-FM rule
backwards results in a feasible schedule with all the jobs in the original prob-
lem starting at a time larger than or equal to zero, then there exists a schedule
for Qm | prmp | Limax with Lyax < z. In order to find the minimum L. a
simple search has to be done to determine the appropriate minimum value of z.

Example 5.5.1 (Minimizing Maximum Lateness with Preemptions)

Consider the following instance of P2 | prmp | Lmax with 4 jobs. The pro-
cessing times and due dates are given in the table below. Preemptions are
allowed at integer points in time.
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jobs 1 2 3 4
di 4589
p; 3338

First, it has to be checked whether there exists a feasible solution with
Lax = 0. The data of the instance created through time reversal are deter-
mined as follows. The release dates are obtained by determining the max-
imum due date in the original problem which is 9 and corresponds to job
4; the release date of job 4 in the new problem is then set equal to 0. The
release dates of the remaining jobs are obtained by subtracting the original
due dates from 9.

jobs 1 2 3 4
Tj 5410
p;i 3338

The question now is: in this new instance can a schedule be created with a
makespan less than 97 Applying LRPT immediately yields a feasible sched-
ule. I

Consider now Qm | rj, prmp | Lmax. Again a parametric study can be done.
First an attempt is made to find a schedule with L.« equal to z. Due date
d; is replaced by a deadline d; + z. Reversing this problem does not provide
any additional insight as it results in a problem of the same type with release
dates and due dates reversed. However, this problem still can be formulated as
a network flow problem that is solvable in polynomial time.

5.6 Online Scheduling

In all previous sections the underlying assumptions were based on the fact
that all the problem data (e.g., number of jobs, processing times, release dates,
due dates, weights, and so on) are known in advance. The decision-maker can
determine at time zero the entire schedule while having all the information
at his disposal. This most common paradigm is usually referred to as offline
scheduling.

One category of parallel machine scheduling problems that has not yet been
addressed in this chapter are the so-called online scheduling problems. In an
online scheduling problem the decision-maker does not know in advance how
many jobs have to be processed and what the processing times are. The decision-
maker becomes aware of the existence of a job only when the job is released
and presented to him. Jobs that are released at the same point in time are
presented to the decision-maker one after another. The decision-maker only
knows the number of jobs released at that point in time after the last one has
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been presented to him. The processing time of a job becomes known only when
the job has been completed. If the assumption is made that jobs are going to
be released at different points in time, then the decision-maker does not know
at any given point in time how many jobs are still going to be released and
what their release dates are going to be. (In an offline scheduling problem all
information regarding all n jobs is known a priori.)

An online counterpart of Pm || v can be described as follows. The jobs are
going to be presented to the decision-maker one after another going down a
list. The decision-maker only knows how long the list is when the end of the list
has been reached. When a job has been presented to the decision-maker (or,
equivalently, when the decision-maker has taken a job from the list), he may
have to wait till one (or more) machines have become idle before he assigns the
job to a machine. After he has assigned the job to a machine, the decision-maker
can consider the next job on the list. After a job has been put on a machine
starting at a certain point in time, the decision-maker is not allowed to preempt
and has to wait till the job is completed. If the objective function is a regular
performance measure, then it may not make sense for the decision-maker to
leave a machine idle when there are still one or more jobs on the list.

The objective functions in online scheduling are similar to those in offline
scheduling. The effectiveness of an online scheduling algorithm is measured by
its competitive ratio with respect to the objective function. An online algorithm
is p-competitive if for any problem instance the objective value of the schedule
generated by the algorithm is at most p times larger than the optimal objective
value in case the schedule had been created in an offline manner with all data
known beforehand. The competitive ratio is basically equivalent to a worst case
bound.

Consider the following online counterpart of Pm || Ciyax. There are a fixed
number of machines (m) in parallel; this number is known to the decision-maker.
The processing time of a job is at time zero not known to the decision-maker; it
only becomes known upon the completion of a job. When a machine is freed the
decision-maker has to decide whether to assign a job to that machine or keep it
idle. He has to decide without knowing the remaining processing times of the
jobs that are not yet completed and without knowing how many jobs are still
waiting for processing. One well-known algorithm for this problem is usually
referred to as the List Scheduling (LIST) algorithm. According to LIST, the
jobs are presented to the decision-maker according to a list and every time the
decision-maker considers the assignment of a job to a machine, he checks the
list and takes the next one from the list. So, every time a machine completes a
job, the decision maker takes the next job from the list and assigns it to that
machine (the decision-maker does not allow for any idle time on the machine).

Theorem 5.6.1. The competitive ratio of the LIST algorithm is 2 — ;L.

Proof. First, it has to be shown that the competitive ratio of LIST cannot be
better (less) than 2 — 1/m. Consider a sequence of m(m — 1) jobs with running
time 1 followed by one job with running time m. A LIST schedule following this
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sequence finishes by time 2m — 1, while the optimal schedule has a makespan
of m.

In order to show that the competitive ratio cannot be larger than 2 — 1/m,
consider the job that finishes last. Suppose it starts at time ¢ and its processing
time is p. At all times before ¢ all machines must have been busy, otherwise the
last job could have started earlier. Hence the optimal makespan Cyax(OPT)
must satisfy

Cunax(OPT) >t 4 7.
m

In addition, Cpax(OPT) > p, as the optimal schedule must process the last job.
From these two inequalities, it follows that the makespan of the online solution,
t + p, is bounded from above by

t+p = t+f;+ (1— ;)p < (2— ;)CHI&X(OPT). 0

The result presented in Theorem 5.6.1 actually holds for a more general
model. Consider the online counterpart of Pm | rj | Cinax. In this online prob-
lem the jobs arrive at different points in time without prior knowledge of the
decision-maker. The decision-maker again can apply the LIST algorithm: every
time a machine becomes available, the decision-maker considers among all jobs
that have already arrived, the one that has waited the longest and assigns this
job to the machine that has just been freed. The competitive ratio of the LIST
algorithm applied in this environment is the same as in Theorem 5.6.1.

Consider now the online counterpart of Pm | prmp | > C;. All jobs are
presented to the decision-maker at time ¢ = 0. The decision-maker is allowed to
preempt. The decision-maker, again, only finds out about the processing time
of a job at the moment that it has been completed.

The following algorithm for this online scheduling problem is quite different
from the LIST algorithm. The so-called Round Robin (RR) algorithm cycles
through the list of jobs, giving each job a fixed unit of processing time in turn.
The Round Robin algorithm ensures that at all times any two uncompleted jobs
have received an equal amount of processing time or one job has received just
one unit of processing more than the other. If the unit of processing is made
very small, then the Round Robin rule becomes equivalent to the Processor
Sharing rule (see Example 5.2.9). If the total completion time is the objective
to be minimized, then the competitive ratio of RR can be determined.

Theorem 5.6.2. The competitive ratio of the RR algorithm is 2.

Proof. Assume, for the time being, that the number of jobs, n, is known. In
what follows, it will actually be shown that the worst case ratio of RR is 2 —
2m/(n 4+ m).

In order to show that the worst case ratio cannot be better (lower) than
2—2m/(n+m), it suffices to find an example that attains this bound. Consider
n identical jobs with processing time equal to 1 and let n be a multiple of m. It
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is clear that under the Round Robin rule all n jobs are completed at time n/m,
whereas under the nonpreemptive scheduling rule (which is also equivalent to
SPT), m jobs are completed at time 1, m jobs at time 2, and so on. So for this
example the ratio is n?/m divided by

5 (1)

which equals 2 — 2m/(n + m).

It remains to be shown that the worst case ratio cannot be worse (larger) than
2—2m/(n+m). Assume the processing times of the jobs are p1 > ps > -+ > p,,.
Let R(¢), £ =1,...,[n/m], denote the subset of jobs j that satisfy

(L—1)m < j </{m.

So R(1) contains jobs 1, ..., m (the longest jobs); R(2) contains jobs m+1,m+
2,...,2m, and so on. It can be shown that the schedule that minimizes the total
completion time is SPT and that the total completion time under SPT is

n n [n/m]
> Ci(OPT)=> Ci(SPT)= > > fp;.
j=1 j=1 /=1 jeR(¥)

Consider now the total completion time under RR. Note that C; denotes the
completion time of the jth longest job. It can be shown now that

Cj(RR) = Cj1(RR) + (j/m)(pj — pjt+1)
for j > m, while
Cj (RR> = Cm-&-l(RR) +Pj — Pm+1

for j < m. Eliminating the recurrence yields for j > m

Cj(RR) = Z Pk

k J+1
and for j <m
Cj(RR) = p; + Z Pi-
k m—+1
A simple calculation establishes that

n

Y CiRR) =) pi+ Y an; 'p,.
j=1 j=1

j=m+1

The ratio Y C;(RR)/ Y C;(OPT) is maximized when all the jobs in the same
subset have the same processing time. To see this, note that for OPT (SPT)
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the coefficient of p;’s contribution to the total completion time is determined
solely by its subset index. On the other hand, for RR, the coefficient is smaller
for the longer jobs within a specific group. Thus, reducing the value of each
p; to be equal to the smallest processing time of any job in its group can only
increase the ratio. By a similar argument, it can be shown that the worst case
ratio is achieved when n is a multiple of m.

Assume now that each subset contains exactly m jobs of the same length.
Let go denote the common processing time of any job in subset R(¢). Then, a
simple calculation shows that

n/m

> C;(0PT) =Y milq,
j=1 =1

and ,
> Ci(RR) = m(2f - 1)qu.
j=1 /=1

Once again, the ratio is maximized when all the g, are equal, implying that the
worst case ratio is exactly 2 — 2m/(n +m).

Since in online scheduling a competitive ratio is usually not expressed as a
function of n (since the number of jobs is typically not known in advance), the
competitive ratio has to hold for any value of n. It follows that the competitive
ratio for RR is equal to 2. O

Consider now the generalization where the jobs are released at different
points in time. What is the competitive ratio of the Round Robin rule when
applied to the online counterpart of Pm | r;,prmp | >, C; ? It can be shown
fairly easily that the competitive ratio of the RR algorithm is then unbounded
(even for the special case of a single machine).

Actually, there are several variants of the general online scheduling paradigm.
The variant considered in the two theorems above assumes that the decision-
maker does not know the processing time of a job at its release. The decision-
maker only finds out what the processing time is when the job has been com-
pleted. This form of online scheduling is typically referred to as non-clairvoyant
online scheduling.

A second important variant of the online scheduling paradigm assumes that
the processing time of a job becomes known to the decision-maker immediately
upon its release. This variant is often referred to as clairvoyant online schedul-
ing. In clairvoyant online scheduling the decision-maker still does not know how
many jobs are going to be released and when the releases will occur. However,
the algorithms designed for clairvoyant online scheduling may now be based
on the processing times of the jobs that already have been released and that
have not yet completed their processing. For example, consider the clairvoyant
online scheduling counterpart of Pm | r;, prmp | > C;. Rather then using the
RR algorithm, one can now apply the Shortest Remaining Processing Time first
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(SRPT) rule. When applying the SRPT rule to 1 | r;,prmp | > Cj, it turns
out that the competitive ratio of SRPT is 1. (That means that any advance
knowledge regarding the jobs that are to be released in the future does not
provide any benefit.) However, if the number of machines in parallel is larger
than or equal to 2, then the competitive ratio of SRPT is unbounded.

An entirely different class of online algorithms are the so-called randomized
online algorithms. A randomized algorithm allows the decision-maker to make
random choices (for example, instead of assigning a job to the machine with the
smallest load, the decision-maker may assign a job to a machine at random). If
randomization is allowed, then it is of interest to know the expected objective
value, where the expectation is taken over the random choices of the algorithm.
A randomized algorithm is o-competitive if for each instance this expectation
is within a factor of o of the optimal objective value.

5.7 Discussion

This chapter focuses primarily on parallel machine problems that either are
polynomial time solvable or have certain properties that are of interest. This
chapter does not address the more complicated parallel machine problems that
are strongly NP-hard and have little structure.

A significant amount of research has been done on parallel machine schedul-
ing problems that are strongly NP-hard. A variety of integer programming
formulations have been developed for Rm || > w;C; and Rm || >~ w;U;. These
integer programs can be solved using a special form of branch-and-bound that is
called branch-and-price and that is often referred to as column generation (see
Appendix A). However, there are many other parallel machine problems that
are more complicated and that have not yet been tackled with exact methods.

An example of such a very hard problem is Qm | s;jx | > w;T;. This problem
is extremely hard to solve to optimality. It is already hard to find an optimal
solution for instances with, say, 5 machines and 30 jobs. However, this problem
is of considerable interest to industry and many heuristics have been developed
and experimented with. Part ITI of this book describes several heuristic methods
that have been applied to this problem.

Online scheduling in a parallel machine environment has received a signif-
icant amount of attention during the last couple of years. Online scheduling
is important for several reasons. In practice, it is often the case that a very
limited amount of information is available when a decision must be made, see
Example 1.1.4. From a theoretical point of view, online scheduling is of interest
because it establishes a bridge between deterministic and stochastic scheduling.
In stochastic scheduling decisions also have to be made with only a limited
amount of information available. However, the stochastic scheduling paradigm
is still quite different from the online paradigm. Nevertheless, the bounds ob-
tained in online scheduling often give rise to bounds in stochastic scheduling.
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Exercises (Computational)
5.1. Consider P6 || Cipax with 13 jobs.

jobs 1 2345678910 11 12 13

p; 6667788991010 11 11

(a) Compute the makespan under LPT.
(b) Find the optimal schedule.

5.2. Consider P4 | prec | Cinax with 12 jobs.

jobs 1 2 3 4 5 6 7 8 910 11 12
p; 10 10 10 12 11 10 12 12 10 10 10 10

The jobs are subject to the precedence constraints depicted in Figure 5.10.

(a) Apply the generalized version of the CP rule: every time a machine is
freed select the job at the head of the string with the largest total amount
of processing.

(b) Apply the generalized version of the LNS rule: every time a machine is
freed select the job that precedes the largest total amount of processing.

(c) Is either one of these two schedules optimal?

O——D——f

Fig. 5.10 Precedence constraints graph (Exercise 5.2)
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5.3. Consider P3 | brkdwn, M; | Ciax with 8 jobs.

jobs 1 23456738
p; 1010777777
Machines 1 and 2 are available continuously. Machine 3 is not available during
the interval [0, 1]; after time 1 it is available throughout. The M; sets are defined
as follows:
M, = {1v 3}
My, ={2,3}
M3 =My = Ms = {1}
Mg = M7 = Mg = {2}

(a) Apply the LPT rule, i.e., give always priority to the longest job that
can be processed on the machine freed.

(b) Apply the LFJ rule, i.e., give always priority to the least flexible job
while disregarding processing times.

(c) Compute the ratio Cryax(LPT)/Crax(LFJ).

5.4. Consider P3 | prmp | > C; with the additional constraint that the com-
pletion of job j has to be less than or equal to a given fixed deadline d;. Pre-
emptions may occur only at integer times 1,2,3,...

jobs 1 2 3 4 5 6 7 8 910 11

Dj 2 3 3 5 8 8 8 91214 16
oo oo oo oo 11 12 13 28 29

Find the optimal schedule and compute the total completion time.

5.5. Consider Poo | prec | Ciax

jobs 1 23456789 10 11 12 13
p; 5119873869 2 5 2 9

The precedence constraints are depicted in Figure 5.11. Determine the optimal
makespan and which jobs are critical and which jobs are slack.

5.6. Consider P5 || Y h(C;) with 11 jobs.

jobs 1234567891011
pi 555667788 9 9
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Fig. 5.11 Precedence constraints graph (Poo | prec | Cimax) for
Exercise 5.5

The function h(C};) is defined as follows.

o if C; < 15
h(C) = {Cj _15iC; > 15
(a) Compute the value of the objective under SPT.
(b) Compute the value of the objective under the optimal schedule.

5.7. Consider again P5 || > h(C;) with the 11 jobs of the previous exercise.
The function h(C};) is now defined as follows:

L [CifC; <15
hCs) = { 15 if C; > 15.

(a) Compute the value of the objective function under SPT.
(b) Compute the value of the objective under the optimal schedule.

5.8. Counsider Q2 | prmp | Cinax with the jobs

jobs 1 2 3 4
p; 36 24 16 12

and machine speeds v; = 2 and vy = 1.

(a) Find the makespan under LRPT when preemptions can only be made
at the time points 0, 4, 8, 12, and so on.
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(b) Find the makespan under LRPT when preemptions can only be made
at the time points 0, 2, 4, 6, 8, 10, 12, and so on.

(¢) Find the makespan under LRPT when preemptions can be made at any
time.

(d) Compare the makespans under (a), (b) and (c).

5.9. Consider the following example of P3 | prmp,brkdwn | )" C; with 6
jobs. Three jobs have a processing time of 1, while the remaining three have
a processing time of 2. There are three machines, but two machines are not
available from time 2 onwards. Determine the optimal schedule. Show that
SRPT is not optimal.

5.10. Consider the following instance of P2 | prmp | Lyax with 4 jobs. Pre-
emptions are allowed at integer points in time. Find an optimal schedule.

jobs 1 2 3 4
d; 56910
p;i 457 9

Exercises (Theory)

5.11. Counsider Pm || Cinax-

(a) Give an example showing that LPT is not necessarily optimal when
the number of jobs is less than or equal to twice the number of machines
(n < 2m).

(b) Show that if an optimal schedule results in at most two jobs on any
machine, then LPT is optimal.

5.12. Counsider Pm || Cpax. Describe the processing times of the instance that
attains the worst case bound in Theorem 5.1.1 (as a function of m). (Hint: see
Exercise 5.1.)

5.13. Show that the CP rule is optimal for Pm | outtree,p; = 1 | Cmax-

5.14. Complete the proof of Theorem 5.1.5. That is, show that the CP rule
applied to Pm | intree,p; = 1 | Cmax results in a makespan that is equal to
Imax + ¢

5.15. Consider Pm | 7, prmp | Cmax. Formulate the optimal policy and prove
its optimality.

5.16. Counsider Pm | prmp, brkdwn | Cpax with the number of machines avail-
able a function of time, i.e., m(t). Show that for any function m(¢) LRPT
minimizes the makespan.
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5.17. Consider Pm | brkdwn | > C; with the number of machines available a
function of time, i.e., m(t). Show that if m(t) is increasing the nonpreemptive
SPT rule is optimal.

5.18. Consider Pm | prmp, brkdwn | Y_ C; with the number of machines avail-
able a function of time, i.e., m(t). Show that the preemptive SRPT rule is
optimal if m(t) > m(s) — 1 for all s < ¢.

5.19. Consider Pm | prmp | 3 C; with the added restriction that all jobs must
be finished by some fixed deadline d, where

072 maX(ij7p17-~-7pn)-
m

Find the rule that minimizes the total completion time and prove its optimality.

5.20. Consider Pm || > w;C;. Show that in the worst case example of the
WSPT rule w; has to be approximately equal to p;, for each j.

5.21. Give a characterization of the class of all schedules that are optimal for
Pm || >~ C;. Determine the number of schedules in this class as a function of n
and m.

5.22. Consider P2 || > C;. Develop a heuristic for minimizing the makespan
subject to total completion time optimality. (Hint: Say a job is of Rank j if
7 — 1 jobs follow the job on its machine. With two machines in parallel there
are two jobs in each rank. Consider the difference in the processing times of the
two jobs in the same rank. Base the heuristic on these differences.)

5.23. Consider Pm | M; | 7. The sets M; are given. Let J; denote the set of jobs
that are allowed to be processed on machine 7. Show, through a counterexample,
that the sets M} being nested does not necessarily imply that sets .J; are nested.
Give sufliciency conditions on the set structures under which the M sets as well
as the J; sets are nested.

5.24. Show, through a counterexample, that the CP rule is not necessarily
optimal for Pm | intree,p; =11 Cj.

5.25. Consider Pm | 7;,prmp | Lmax. Show through a counterexample that
the preemptive EDD rule does not necessarily yield an optimal schedule.

5.26. Consider Pm | intree, prmp | Cimax with the processing time of each job
at level k equal to pg. Show that a preemptive version of the generalized CP
rule minimizes the makespan.

5.27. Counsider Qoo | prec,prmp | Chyax. There are an unlimited number of
machines that operate at the same speed. There is one machine that is faster.
Give an algorithm that minimizes the makespan and prove its optimality.
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5.28. Consider an online version of Pm | rj, prec | Ciax. An online algorithm
for this problem can be described as follows. The jobs are again presented
in a list; whenever a machine is freed, the job that ranks highest among the
remaining jobs which are ready for processing is assigned to that machine (i.e.,
it must be a job that already has been released and of which all predecessors
already have been completed). Show that the bound presented in Theorem 5.6.1
applies to this more general problem as well.

Comments and References

The worst case analysis of the LPT rule for Pm || Cmax is from the classic
paper by Graham (1969). This paper gives one of the first examples of worst
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In many manufacturing and assembly facilities each job has to undergo a series
of operations. Often, these operations have to be done on all jobs in the same
order implying that the jobs have to follow the same route. The machines are
then assumed to be set up in series and the environment is referred to as a flow
shop.

The storage or buffer capacities in between successive machines may at times
be, for all practical purposes, virtually unlimited. This is often the case when
the products that are being processed are physically small (e.g., printed circuit
boards, integrated circuits), making it relatively easy to store large quantities
between machines. When the products are physically large (e.g., television sets,
copiers), then a buffer space in between two successive machines may have a
limited capacity, which may cause blocking. Blocking occurs when the buffer is
full and the upstream machine is not allowed to release a job into the buffer
after completing its processing. If this is the case, then the job has to remain
at the upstream machine, preventing a job in the queue at that machine from
beginning its processing.

A somewhat more general machine environment consists of a number of
stages in series with a number of machines in parallel at each stage. A job
has to be processed at each stage only on one of the machines. This machine
environment has been referred to as a flexible flow shop, a compound flow shop,
a multi-processor flow shop, or a hybrid flow shop.

M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 151
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Most of the material in this chapter concerns the makespan objective. The
makespan objective is of considerable practical interest as its minimization is
to a certain extent equivalent to the maximization of the utilization of the
machines. The models, however, tend to be of such complexity that makespan
results are already relatively hard to obtain. Total completion time and due
date related objectives tend to be even harder.

6.1 Flow Shops with Unlimited Intermediate Storage

When searching for an optimal schedule for F'm || Cpax the question arises
whether it suffices merely to determine a permutation in which the jobs traverse
the entire system. Physically it may be possible for one job to “pass” another
while they are waiting in queue for a machine that is busy. This implies that the
machines may not operate according to the First Come First Served principle
and that the sequence in which the jobs go through the machines may change
from one machine to another. Changing the sequence of the jobs waiting in
a queue between two machines may at times result in a smaller makespan.
However, it can be shown that there always exists an optimal schedule without
job sequence changes between the first two machines and between the last two
machines (see Exercise 6.11). This implies that there are optimal schedules for
F2 || Cax and F3 || Chax that do not require sequence changes between
machines. One can find examples of flow shops with four machines in which the
optimal schedule does require a job sequence change in between the second and
the third machine.

Finding an optimal schedule when sequence changes are allowed is signifi-
cantly harder than finding an optimal schedule when sequence changes are not
allowed. Flow shops that do not allow sequence changes between machines are
called permutation flow shops. In these flow shops the same sequence, or permu-
tation, of jobs is maintained throughout. The results in this chapter are mostly
limited to permutation flow shops.

Given a permutation schedule ji,...,j, for an m machine flow shop, the
completion time of job jr at machine i can be computed easily through a set
of recursive equations:

%
Cig :Zpl,h t=1,...,m
=1
k
Crii :Zpl,jl k=1,...,n
=1
Ci gy = max(Ci1 5, Ciji_y) + Pijy i=2,....m; k=2,....n

The value of the makespan under a given permutation schedule can also be
computed by determining the critical path in a directed graph that corresponds
to the schedule. For a given sequence ji, ..., j, the directed graph can be con-
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Fig. 6.1 Directed Graph for the Computation of the Makespan in
Fm | prmu | Cmax under sequence ji,...,J

153

structed as follows: for each operation, say the processing of job j; on machine
i, there is a node (4, ji) with a weight that is equal to the processing time of job
jr on machine i. Node (i,j%), i =1,...,m—1,and k = 1,...,n — 1, has arcs
going out to nodes (i + 1, jx) and (4, jk+1). Nodes corresponding to machine m
have only one outgoing arc, as do nodes corresponding to job j,. Node (m, j,)
has no outgoing arcs (see Figure 6.1). The total weight of the maximum weight
path from node (1, j1) to node (m, j,) corresponds to the makespan under the

permutation schedule ji, ..., j,.

Example 6.1.1 (Graph Representation of Flow Shop)

Consider 5 jobs on 4 machines with the processing times presented in the

table below.
jobs

P15
P2,j
P34k
yZw

J1 J2 J3 Ja Js
5 5 3

L

O >

W W N

6

4
4
2

3

4
1
5

The corresponding graph and Gantt chart are depicted in Figure 6.2. From
the directed graph it follows that the makespan is 34. This makespan is

determined by two critical paths.

An interesting result can be obtained by comparing two m machine permu-
tation flow shops with n jobs. Let p,l(;) and pg) denote the processing time of
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5 5 3| 6 3|
4 42| 4 4
4 4 3| 41|
3| 6 |32 5|
| | | | | | |
0 10 20 30

Fig. 6.2 Directed graph, critical paths and Gantt chart (the numerical
entries represent the processing times of the jobs and not the job
indexes)

job j on machine i in the first and second flow shop, respectively. Assume

1y _ @
Pij" = Pmt1—ij-
This basically implies that the first machine in the second flow shop is identical
to the last machine in the first flow shop; the second machine in the second flow
shop is identical to the machine immediately before the last in the first flow
shop, and so on. The following lemma applies to these two flow shops.

Lemma 6.1.2. Sequencing the jobs according to permutation ji,...,Jn in
the first flow shop results in the same makespan as sequencing the jobs according
to permutation jn,...,J1 in the second flow shop.

Proof. If the first flow shop under sequence ji,...,j, corresponds to the dia-
gram in Figure 6.1, then the second flow shop under sequence j,,...,j1 corre-
sponds to the same diagram with all arcs reversed. The weight of the maximum
weight path from one corner node to the other corner node does not change
when all arcs are reversed. O
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Lemma 6.1.2 states the following reversibility result: the makespan does not
change if the jobs traverse the flow shop in the opposite direction in reverse
order.

Example 6.1.3 (Graph Representations and Reversibility)

Consider the instance of Example 6.1.1. The dual of this instance is given in
the table below.

jobs j1 j2 j3 ja Js
P1,jn 5 2 3 6 3

D25 1 4 3 4 4
P35 4 4 2 4 4
P45 3 6 3 5 5

The corresponding directed graph, its critical paths and the Gantt charts are
depicted in Figure 6.3. It is clear that the critical paths are determined by
the same set of processing times and that the makespan, therefore, is 34 as
well. I

Consider now the F2 || Cpax problem: a flow shop with two machines in
series with unlimited storage in between the two machines. There are n jobs
and the processing time of job j on machine 1 is p;; and its processing time on
machine 2 is po;. This was one of the first problems to be analyzed in the early
days of Operations Research and led to a classical paper in scheduling theory
by S.M. Johnson. The rule that minimizes the makespan is commonly referred
to as Johnson’s rule.

An optimal sequence can be generated as follows. Partition the jobs into
two sets with Set I containing all jobs with p1; < pa; and Set II all jobs with
p1; > p2j. The jobs with pi; = pa; may be put in either set. The jobs in
Set I go first and they go in increasing order of p1; (SPT); the jobs in Set II
follow in decreasing order of po; (LPT). Ties may be broken arbitrarily. In what
follows such a schedule is referred to as an SPT(1)-LPT(2) schedule. Of course,
multiple schedules may be generated this way.

Theorem 6.1.4. Any SPT(1)-LPT(2) schedule is optimal for F2 || Ciax-

Proof. The proof is by contradiction. Suppose another type of schedule is op-
timal. In this optimal schedule there must be a pair of adjacent jobs, say job j
followed by job k, that satisfies one of the following three conditions:
(i) job j belongs to Set IT and job k to Set I;
(ii) jobs j and k belong to Set I and p1; > pix;
(iii) jobs j and k belong to Set II and pa; < pag.
It suffices to show that under any of these three conditions the makespan

is reduced after a pairwise interchange of jobs j and k. Assume that in the
original schedule job ! precedes job j and job m follows job k. Let C;; denote
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Fig. 6.3 Directed graph, critical paths and Gantt chart (the numerical
entries represent the processing times of the jobs and not the job
indexes)

the completion of job j on machine i under the original schedule and let C7;
denote the completion time of job j on machine i after the pairwise interchange.
Interchanging jobs j and k clearly does not affect the starting time of job m on
machine 1, as its starting time on machine 1 equals Cy;+p1; +p1x. However, it is
of interest to know at what time machine 2 becomes available for job m. Under
the original schedule this is the completion time of job k& on machine 2, i.e., Cyy,
and after the interchange this is the completion time of job j on machine 2, i.e.,
C’éj. It suffices to show that Céj < (5 under any one of the three conditions
described above.
The completion time of job k& on machine 2 under the original schedule is

Cyr, = max (maX (Ca, Cu+pij)+p2, Cu+piy +p1k) + pak

max (sz + pok +p2j, Cu+p1; + 025 + 2k, Cu+Dpij+ ik +p2k)7

whereas the completion time of job j on machine 2 after the pairwise interchange
is
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C5; = max (Czl + par +p25, Cu + pik + p2x +p2j, Cu + pix + p1y +P2j)~

Under condition (i) p1; > p2; and p1x < pak. It is clear that the first terms
within the max expressions of Co; and Céj are identical. The second term in
the last expression is smaller than the third in the first expression and the third
term in the last expression is smaller than the second in the first expression.
So, under condition (i) C3; < Co.

Under condition (ii) p1; < p2j, P1k < P2k and p1j; > pix. Now the second as
well as the third term in the last expression are smaller than the second term
in the first expression. So, under condition (ii) C3; < Cay as well.

Condition (iii) can be shown in a similar way as the second condition. Actu-
ally, condition (iii) follows immediately from the reversibility property of flow
shops. a

These SPT(1)-LPT(2) schedules are by no means the only schedules that are
optimal for F2 || Cpax. The class of optimal schedules appears to be hard to
characterize and data dependent.

Example 6.1.5 (Multiple Optimal Schedules)

Consider a set of jobs with one job that has a very small processing time
on machine 1 and a very large processing time on machine 2, say K, with
K > Z?Zl p1j. It is clear that under the optimal sequence this job should
go first in the schedule. However, the order of the remaining jobs does not
affect the makespan. I

Unfortunately, the SPT(1)-LPT(2) schedule structure cannot be generalized
to characterize optimal schedules for flow shops with more than two machines.
However, minimizing the makespan in a permutation flow shop with an arbi-
trary number of machines, i.e., Fm | prmu | Cpax, can be formulated as a
Mixed Integer Program (MIP).

In order to formulate the problem as a MIP a number of variables have to
be defined: The decision variable zj; equals 1 if job j is the kth job in the
sequence and 0 otherwise. The auxiliary variable I;; denotes the idle time on
machine i between the processing of the jobs in the kth position and (k + 1)th
position and the auxiliary variable W;;, denotes the waiting time of the job in
the kth position in between machines ¢ and ¢+ 1. Of course, there exists a strong
relationship between the variables W;, and the variables I;;. For example, if
I, > 0, then W;_1 141 has to be zero. Formally, this relationship can be estab-
lished by considering the difference between the time the job in the (k + 1)th
position starts on machine ¢ + 1 and the time the job in the kth position com-
pletes its processing on machine i. If A;. denotes this difference and if p;,)
denotes the processing time on machine ¢ of the job in the kth position in the
sequence, then (see Figure 6.4)

Aire = Lig + piget1) + Wikr1 = Wik + pigie) + Liv1,k-
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Aj
— Lk >\ Wikr
Machine i | Pi(k) Pi(k+1)
— Wy, |~—
Machine i + 1 | Pi+1(k—1) Pi +1(k) Pi+1(k+1)

Wik>0and1i+l,k:0

Fig. 6.4 Constraints in the integer programming formulation

Note that minimizing the makespan is equivalent to minimizing the total idle
time on the last machine, machine m. This idle time is equal to

m—1 n—1
Z Pi1) + Z Iy,
i=1 =1

which is the idle time that must occur before the job in the first position reaches
the last machine and the sum of the idle times between the jobs on the last
machine. Using the identity

n
Pik) = Z LjkPijs
j=1

the MIP can now be formulated as follows.

m—1 n n—1
min ( Z Zxﬂpij + ZImj)a
i=1 j=1 =1

subject to

n
ijkzl k=1,...,n,
j=1
n
=1 j=1...n,
k=1

n
Ly, + Z Tj k+1Dij + Wi ky1

Jj=1
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n
— ik_zxjkpi-i-l,j_li-i-l,k:o k=1,....n—=1; i=1,...,m—1,
i=1

Wﬂ:O Z‘:].,...,mf].,
Iy=0 k=1,....,n—1.

The first set of constraints specifies that exactly one job has to be assigned to
position k for any k. The second set of constraints specifies that job j has to be
assigned to exactly one position. The third set of constraints relate the decision
variables x ;1 to the physical constraints. These physical constraints enforce the
necessary relationships between the idle time variables and the waiting time
variables. Thus, the problem of minimizing the makespan in an m machine
permutation flow shop is formulated as a MIP. The only integer variables are
the binary (0—1) decision variables x . The idle time and waiting time variables
are nonnegative continuous variables.

Example 6.1.6 (Mixed Integer Programming Formulation)

Consider again the instance in Example 6.1.1. Because the sequence is now
not given, the subscript j; in the table of Example 6.1.1 is replaced by the
subscript 7 and the headings 71, j2, j3, j4 and js are replaced by 1, 2, 3, 4,
and 5, respectively.

jobs 1 2 3 45
P15 55363
D2, 4 4 2 4 4
P3,5 44341
pij 36325

With these data the objective of the MIP is
5x11 + 5x21 + 3x31 + 6241 + 3251 + 4211 + 4w + 2231 + dxgr + 451+

+4x11 +4xor + 3x31 +4war + Ts1 + La1 + Tao + Tz + Iyg =
13711 + 13z21 4+ 8x31 + 14w41 + 8xs1 + Lay + Luo + Lu3 + Iua

The first and second set of constraints of the program contain 5 constraints
each. The third set contains (5 — 1)(4 — 1) = 12 constraints. For example,
the constraint corresponding to £ = 2 and ¢ = 3 is

I3o + 413 + 423 + 333 + 443 + T53 + Was

—W3g — 3212 — 6222 — 3732 — 2242 — T2 — I42 = 0. I
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&

Fig. 6.5 3-PARTITION reduces to F'3 || Cmax

The fact that the problem can be formulated as a MIP does not immediately
imply that the problem is NP-hard. It could be that the MIP has a special
structure that allows for a polynomial time algorithm (see, for example, the
integer programming formulation for Rm || > C;). In this case, however, it
turns out that the problem is hard.

Theorem 6.1.7. F3 || Chax is strongly NP-hard.

Proof. By reduction from 3-PARTITION. Given integers aq, . .., as, b, under the
usual assumptions, let the number of jobs n equal 4t 4+ 1 and let

p1o =0, p20 =, pso = 2b,

plj:2b7 p?j:b7 p3]:2b7 j:17"'7t_17

pit =2b,  pa =0, p3t =0,

Priv; =0, pagrj=aj, paty; =0, j=1,...,3t

Let z = (2t + 1)b. A makespan of value z can be obtained if the first ¢ + 1
jobs are scheduled according to sequence 0,1,...,t. These ¢t + 1 jobs then form
a framework, leaving ¢ gaps on machine 2. Jobs ¢t + 1,...,t + 3t have to be
partitioned into t sets of three jobs each and these t sets have to be scheduled
in between the first ¢ + 1 jobs. A makespan of value z can be obtained if and
only if 3-PARTITION has a solution (see Figure 6.5). |

This complexity proof applies to permutation flow shops as well as to flow
shops that allow sequence changes midstream (as stated before, for the three
machine flow shop it is known that a permutation schedule is optimal in the
larger class of schedules).

As Fm | prmu | Cpax is one of the more basic scheduling problems, it has
attracted a great deal of attention over the years. Many heuristics have been
developed for dealing with this problem. One of the first heuristics developed
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for this problem is the Slope heuristic. According to this heuristic a slope index
is computed for each job. The slope index A; for job j is defined as

m

A== (m — (20— 1))p,»j.

i=1

The jobs are then sequenced in decreasing order of the slope index. The reason-
ing behind this heuristic is simple. From Theorem 6.1.4 it is already clear that
jobs with small processing times on the first machine and large processing times
on the second machine should be positioned more towards the beginning of the
sequence, while jobs with large processing times on the first machine and small
processing times on the second machine should be positioned more towards
the end of the sequence. The slope index is large if the processing times on the
downstream machines are large relative to the processing times on the upstream
machines; the slope index is small if the processing times on the downstream
machines are relatively small in comparison with the processing times on the
upstream machines.

Example 6.1.8 (Application of the Slope Heuristic)

Consider again the instance in Examples 6.1.1 and 6.1.6. Replace the ji by
j and the ji,...,j5 by 1,...,5. The slope indices are:

A1 =—3Bx5)—-(1x4)+(1x4)+Bx3)= —6
Ay =—Bx5)—(I1x4)+(1x4)+B3x6)= +3
A3 =—B3x%x3)—(1x2)+(1x3)+(B3x3)= +1
A;=—3Bx6)—(Ix4)+(1x4)+(3x2)=-12
As=—Bx3)—(I1x4)+(1Ix1)+B3x5)= +3

The two sequences suggested by the heuristic are therefore 2,5,3,1,4 and
5,2,3,1,4. The makespan under both these sequences is 32. Complete enu-
meration verifies that both sequences are optimal. I

In contrast to the makespan objective, results with regard to the total com-
pletion time objective are significantly harder to obtain. It can be shown that
F2 || > Cj is already strongly NP-hard. The proof of this complexity result is
somewhat involved and therefore not presented here.

6.2 Flow Shops with Limited Intermediate Storage

Consider m machines in series with zero intermediate storage between successive
machines. When a machine finishes with the processing of a job, that job cannot
proceed to the next machine if that machine is busy; the job must remain on
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Fig. 6.6 Directed graph for the computation of the makespan

the first machine, which thus cannot start any processing of subsequent jobs.
As stated before, this phenomenon is referred to as blocking.

In what follows only flow shops with zero intermediate storages are consid-
ered, since any flow shop with positive (but finite) intermediate storages between
machines can be modeled as a flow shop with zero intermediate storages. This
follows from the fact that a storage space capable of containing one job may be
regarded as a machine on which the processing times of all jobs are equal to
Zero.

The problem of minimizing the makespan in a flow shop with zero interme-
diate storages is referred to in what follows as F'm | block | Cryax.

Let D;; denote the time that job j actually departs machine . Clearly, D;; >
C;. Equality holds when job j is not blocked. The time job j starts its processing
at the first machine is denoted by Dy;. The following recursive relationships hold
under sequence ji, ..., jn.

7
D, = E D
=1

D; j,, = max(Di—1,j, + Pijy> Dit1,5i 1)
D jy = Din—1,5; + Pmji

For this model the makespan under a given permutation schedule can also be
computed by determining the critical path in a directed graph. In this directed
graph node (i,jj) denotes the departure time of job ji from machine i. In
contrast to the graph in Section 6.1 for flow shops with unlimited intermediate
storages, in this graph the arcs, rather than the nodes, have weights. Node
(4,9k),i=1,...,m—1; k=1,...,n—1, has two outgoing arcs; one arc goes
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to node (¢ + 1, ji) and has a weight or distance p;11 j,, the other arc goes to
node (i — 1, jg+1) and has weight zero. Node (m, ji) has only one outgoing arc
to node (m — 1, jx4+1) with zero weight. Node (i, j,,) has only one outgoing arc
to node (i + 1, j,) with weight p; 11 ;. Node (m, j,) has no outgoing arcs (see
Figure 6.6). The Ciax under sequence ji,...,J, is equal to the length of the
maximum weight path from node (0, j1) to node (m, jp).

Example 6.2.1 (Graph Representation of Flow Shop with Blocking)

Consider the instance of Example 6.1.1. Assume that the same 5 jobs with
the same processing times have to traverse the same four machines. The
only difference is that now there is zero intermediate storage between the
machines. The directed graph and the Gantt chart corresponding to this
situation is depicted in Figure 6.7 on the next page. There is now only one
critical path that determines the makespan of 35. I

The following lemma shows that the reversibility property extends to flow
shops with zero intermediate storage. Consider two m machine flow shops with
blocking and let pg;) and pg) denote the processing times of job 7 on machine

7 in the first and second flow shop respectively.

Lemma 6.2.2. If
1 _ (2
Dij" = Pmy1-i
then sequence ji,...,Jn in the first flow shop results in the same makespan as
sequence jp,...,J1 in the second flow shop.

Proof. It can be shown that there is a one-to-one correspondence between paths
of equal weight in the two directed graphs corresponding to the two flow shops.
This implies that the paths with maximal weights in the two directed graphs
must have the same total weight. a

This reversibility result is similar to the result in Lemma 6.1.2. Actually,
one can argue that the result in Lemma 6.1.2 is a special case of the result in
Lemma 6.2.2. The unlimited intermediate storages can be regarded as sets of
machines on which all processing is equal to zero.

Consider the F2 | block | Cyax problem with two machines in series and zero
intermediate storage in between. Note that in this flow shop, whenever a job
starts its processing on the first machine, the preceding job starts its processing
on the second machine. The time job ji spends on machine 1, in process or
blocked, is therefore max(p1 j,,P2,j._,). The first job in the sequence spends
only p1 4, on machine 1. This makespan minimization problem is equivalent to
a Travelling Salesman Problem with n + 1 cities. Let the distance from city j
to city k be equal to

dor = p1k

djo = p2;
djr = max(paj, p1k)
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Fig. 6.7 Directed graph, critical path and Gantt chart (the numerical
entries represent the processing times of the jobs and not the job

indexes)

The total distance travelled is then equal to the makespan of the flow shop.
Actually, the distance matrix can be simplified somewhat. Instead of minimizing
the makespan, one can minimize the total time between 0 and Cyp.x that one
of the two machines is either idle or blocked. The two objectives are equivalent
since twice the makespan is equal to the sum of the 2n processing times plus
the sum of all idle times. Minimizing the sum of all idle times is equivalent to
the following Travelling Salesman Problem with n + 1 cities:

dox, = D1k
djo = pa;
djx = || p2j — p1x |



6.2 Flow Shops with Limited Intermediate Storage 165

The idle time on one of the machines, when job j starts on machine 2 and
job k starts on machine 1, is the difference between the processing times po;
and pix. If po; is larger than py; job & will be blocked for the time difference
on machine 1, otherwise machine 2 will remain idle for the time difference.
The distance matrix of this Travelling Salesman Problem is identical to the one
discussed in Section 4.4. The values for by and a¢ in Section 4.4 have to be
chosen equal to zero.

The algorithm for the 1| ;i | Cinax problem with s;; = || ax — b; || can now
be used for F2 | block | Ciax as well, which implies that there exists an O(n?)
algorithm for F'2 | block | Crax.

Example 6.2.3 (A Two Machine Flow Shop with Blocking and the
TSP)

Consider a 4 job instance with processing times

jobs 1 2 3 4
P1,j 2339
Dp2,j 846 2

This translates into a TSP with 5 cities. In the notation of Section 4.4 this
instance of the TSP is specified by following a; and b; values.

cittes 01 2 3 4
b; 02339
aj 0846 2

Applying Algorithm 4.4.5 on this instance results in the tour 0 - 1 — 4 —
2 — 3 — 0. Actually, two schedules are optimal for the flow shop with
blocking, namely schedule 1,4,2,3 and schedule 1,4, 3, 2. These are different
from the SPT(1)-LPT(2) schedules that are optimal in the case of unlimited
buffers. With the same four jobs and unlimited buffers the following three
schedules are optimal: 1,3,4,2; 1,2,3,4 and 1,3,2,4. I

The three machine version of this problem cannot be described as a Travelling
Salesman Problem and is known to be strongly NP-hard. The proof, however,
is rather complicated and therefore omitted.

As with flow shops with unlimited intermediate storage, a fair amount of
research has been done on the development of heuristics for minimizing the
makespan in flow shops with limited intermediate storage and blocking. One
popular heuristic for F'm | block | Cpax is the Profile Fitting (PF) heuristic,
which works as follows: one job is selected to go first, possibly according to
some scheme, e.g., the job with the smallest sum of processing times. This
job, say job ji1, does not encounter any blocking and proceeds smoothly from
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one machine to the next, generating a profile. The profile is determined by its
departure from machine 4. If job j; corresponds to job k, then

i i
Diji =) Phji = Y Dk
h=1 h=1

To determine which job should go second, every remaining job that has not yet
been scheduled is tried out. For each candidate job a computation is carried
out to determine the amount of time machines are idle and the amount of time
the job is blocked at a machine. The departure epochs of a candidate for the
second position, say job ja, can be computed recursively:

D j, = max(D1j, +p1,j5, D2,j,)
D; j, = max(Di—1,j, + Pijor Dit1,5:); i=2,...,m—1
Dy jo = max(Dim—1,j55 D jy) + Pmja

The time wasted at machine ¢, that is, the time the machine is either idle or
blocked, is D; j, — D; j, — pi,j,- The sum of these idle and blocked times over all
m machines is then computed. The candidate with the smallest total is selected
as the second job.

After selecting the job that fits best as the job for the second position, the
new profile, i.e., the departure times of this second job from the m machines,
is computed and the procedure repeats itself. From the remaining jobs the best
fitting job is again selected and so on.

In this description the goodness of fit of a particular job was measured by
the total time wasted on all m machines. Each machine was considered equally
important. It is intuitive that lost time on a bottleneck machine is worse than
lost time on a machine that does not have much processing to do. When mea-
suring the total amount of lost time, it may be appropriate to multiply each of
these inactive time periods on a given machine by a factor that is proportional
to the degree of congestion at that machine. The higher the degree of congestion
at a particular machine, the larger the weight. One measure for the degree of
congestion of a machine that is easy to calculate is simply the total amount of
processing to be done on all the jobs at the machine in question. Experiments
have shown that such a weighted version of the PF heuristic works quite well.

Example 6.2.4 (Application of the PF Heuristic)

Consider again 5 jobs and 4 machines. The processing times of the five jobs
are in the tables in Examples 6.1.1 and 6.1.6. Assume that there is zero
storage in between the successive machines.

Take as the first job the job with the smallest total processing time, i.e.,
job 3. Apply the unweighted PF heuristic. Each one of the four remaining
jobs has to be tried out. If either job 1 or job 2 would go second, the total
idle time of the four machines would be 11; if job 4 would go second the total
idle time of the four machines would be 15 and if job 5 would be second, the
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total idle time would be 3. It is clear that job 5 is the best fit. Continuing
in this manner the PF heuristic results in the sequence 3,5,1,2,4 with a
makespan equal to 32. From the fact that this makespan is equal to the
minimum makespan in the case of unlimited intermediate storage, it follows
that sequence 3,5,1,2,4 is also optimal in the case of zero intermediate
storage.

In order to study the effect of the selection of the first job, consider the
application of the PF heuristic after selecting the job with the largest total
processing time as the initial job. So job 2 goes first. Application of the
unweighted PF heuristic leads to the sequence 2,1, 3,5, 4 with makespan 35.
This sequence is clearly not optimal. I

Consider now a flow shop with zero intermediate storage that follows different
operational procedures. A job, when it goes through the system, is not allowed
to wait at any machine. That is, whenever it has completed its processing on
one machine the next machine has to be idle, so that the job does not have to
wait. In contrast to the blocking case where jobs are pushed down the line by
machines upstream that have completed their processing, the jobs in this case
are actually pulled down the line by machines downstream that have become
idle. This constraint is referred to as the no-wait constraint and minimizing the
makespan in such a flow shop is referred to as the F'm | nwt | Ciyax problem.
It is easy to see that F2 | block | Chax is equivalent to F2 | nwt | Chax.
However, when there are more than two machines in series the two problems are
different. The F'm | nwt | Ciax problem, in contrast to the F'm | block | Ciax
problem, can still be formulated as a Travelling Salesman Problem. The intercity

distances are
i i—1
d'k: max ( E hi — E hk)
J 1<i<m Phj p
h=1 h=1

for j,k=0,...,n. When there are more than two machines in series this Trav-
elling Salesman Problem is known to be strongly NP-hard.

6.3 Proportionate Flow Shops with Unlimited and
Limited Intermediate Storage

Since F'm | prmu | Chax is strongly NP-hard it is of interest to study special
cases that have nice structural properties.

One important special case of the permutation flow shop with unlimited
intermediate storage is the so-called proportionate permutation flow shop with
unlimited intermediate storage. In this flow shop the processing times of job j
on each one of the m machines are equal to p;, i.e., p1j = p2j =+ = pmj = pj.
Minimizing the makespan in a proportionate permutation flow shop is denoted
by Fm | prmu,p;j = pj | Cmax. For a proportionate flow shop a so-called SPT-
LPT sequence can now be defined. A set of n jobs can be partitioned into two
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subsets; the jobs in one subset go first according to SPT and the remaining jobs
follow according to LPT. So a sequence ji,...,Jj, is SPT-LPT if and only if
there is a job ji such that

Pjy Spjzg"'gpjk

and
Djy. > Pira > > Pj,, -

From Theorem 6.1.4 it follows that when m = 2 any SPT-LPT sequence must
be optimal. As may be expected, these are not the only sequences that are
optimal, since this flow shop does have a very special structure.

Theorem 6.3.1. For Fm | prmu,p;j = p; | Cmax the makespan equals
n
Crnax = ij + (m — 1) max(p1,...,Pn)
j=1

and is independent of the schedule.
Proof. The proof is left as an exercise. a

It can be shown that permutation schedules are also optimal in the larger
class of schedules that allow jobs to pass one another while waiting for a ma-
chine, i.e., F'm | p;j = p;j | Cmax (see Exercise 6.17).

The result stated in the theorem above implies that in one aspect the pro-
portionate flow shop is similar to the single machine: the makespan does not
depend on the sequence. Actually there are many more similarities between the
proportionate flow shop and the single machine. The following results, which
are all straightforward extensions of their single machine counterparts, illustrate
this fact.

(i) The SPT rule is optimal for 1 || >° C; as well as for F'm | prmu, p;; =
pi | 22 Cj.
(ii) The algorithm that generates an optimal schedule for 1 || > U; also
generates an optimal schedule for F'm | prmu, p;; = p; | > Uj.
(iii) The algorithm that generates an optimal schedule for 1 || hmax also
generates an optimal schedule for F'm | prmu, pi; = p; | hmax-
(iv) The pseudo-polynomial time dynamic programming algorithm for 1 ||
> T can also be applied to Fm | prmu,p;; = p; | > T;.
(v) The elimination criteria that hold for 1 || Y w;T; also hold for Fm |
prmu, pi; = p; | > w;T;.
Not all results that hold for the single machine hold for the proportionate
flow shop as well. For example, WSPT does not necessarily minimize the total
weighted completion time in a proportionate flow shop. Counterexamples can
be found easily.
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However, Fm | prmu,p;; = p; | >, w;C; can still be solved in polynomial
time. In order to describe the algorithm that minimizes the total weighted
completion time some preliminary results are needed. The first preliminary
result involves a dominance rule.

Lemma 6.3.2. If for jobs j and k both w;/p; > wi/pr and p; < p, then
there exists an optimal sequence in which job j precedes job k.

Proof. The proof is left as an exercise. O

Some additional terminology is required in order to describe the algorithm
that minimizes the total weighted completion time. In an arbitrary permutation
sequence 1,...,n job j is referred to as a new-maz job if and only if p; >
max(p1,...,pj—1). Any given sequence 1,...,n can be partitioned based on its
new-max jobs. Assume there are r new-max jobs in sequence 1,...,n, say jobs
J1,---,Jr- JOb j1 is the very first job in the sequence, i.e., job 1. The sequence
can now be partitioned into r segments 1,...,r, with segment ¢ consisting of
new-max job j, and all the jobs scheduled in between new-max jobs j, and
Je+1- The last segment, segment r, consists of the last new-max job, job j,, and
all the jobs following this new-max job up to and including the last job in the
sequence.

Lemma 6.3.3. In any optimal sequence all the jobs in any given segment,
including the new-mazx job initiating that segment, are scheduled in decreasing
order of w;/p;.

Proof. 1t can be shown easily that all the jobs within a segment are processed on
each machine one after another without any machine idle time in between their
processing. That the jobs within a segment are scheduled in decreasing order of
w;/p; can be shown easily via a straightforward adjacent pairwise interchange
argument. O

The results presented in the two lemmas above imply that the optimal se-
quence has the structure exhibited in Figure 6.8 on the next page.

To describe the algorithm that minimizes the total weighted completion time,
re-index the jobs first in such a way that wi/p1 > wa/pa > -+ > wy,/py, ie.,
they are indexed according to WSPT. The algorithm goes through n iterations.
In iteration k, the algorithm starts out with a partial sequence Sy_; that con-
tains jobs 1,...,k—1in a certain order; the algorithm then extends this partial
sequence by taking job k£ and inserting it in the partial sequence in that position
that causes the smallest increase in the objective function. More formally, the
algorithm can be described as follows:

Algorithm 6.3.4 (Minimizing Total Weighted Completion Time)

Step 1.

Let S consist of job 1.
Set k = 2.
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Fig. 6.8 Structure of an optimal schedule
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Step 2.

Generate partial sequence Si by taking partial sequence Sy—1

and inserting job k such that the increase in the objective function
is minimized.

If there are several possibilities,

choose the one in which job k is inserted latest.

Set k=k+ 1.

Step 3.

If K < n, then go to Step 2.
If k =n+1, then STOP; the optimal sequence is S, I

The above algorithm which generates the optimal schedule is typically re-
ferred to as the Weighted Shortest Processing Time first with Minimum Cost
Insertion (WSPT-MCI) algorithm. Note that because of Lemma 6.3.2 job k
cannot be inserted before any job that has a processing time less than py. Also,
it follows from Lemma 6.3.3 that job k should be inserted just before a new-max
job.

Theorem 6.3.5. Algorithm WSPT-MCI generates an optimal schedule for
Fm | prmu, pi; = p; | Y w,;Cj.

Proof. The result can be shown inductively by proving that there exists an

optimal schedule in which jobs 1,. ..,k appear in the same order as they appear
in sequence Si. This statement clearly holds for £ = 1. Let &* denote an optimal
schedule in which jobs 1,...,k — 1 appear in the same order as they appear

in sequence Si_1 and that is also in accordance to Lemmas 6.3.2 and 6.3.3. It
suffices to show that the optimal sequence S* can be modified without increasing
the value of the objective function so that the processing order of jobs 1,...,k
matches the order in Sy and satisfies Lemmas 6.3.2 and 6.3.3 as well. The proof
is based on a case by case analysis. A distinction must be made between the
characteristics of the possible insertion positions for job k. Assuming that Sk
does not agree with &* with respect to the order of jobs 1,...,k, consider the
following three cases:

(i) Job k is a new-max job in Sk;
(ii) Job k is not a new-max job in S and precedes some job in
set {1,...,k— 1} in &* that it follows in S;
(iii) Job k is not a new-max job in Sy and follows some job in
set {1,...,k— 1} in 8* that it precedes in Sk;

To prove part (i), one can proceed as follows. If job k is a new-max job in S,
then all jobs preceding job k in Si have a smaller processing time and, because
of Lemma 6.3.2, all jobs following job k have a longer processing time. Since
S* satisfies Lemma 6.3.2, job k does not precede any job in &* with a smaller
processing time that is also present in S. What remains to be shown is that in
S*, job k precedes the jobs in Sip_; with a larger processing time, or that S*
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can be modified that way without increasing the value of the objective function.
This can be shown by contradiction; the contradiction involves some adjacent
sequence interchange arguments that are left to the reader.

In order to prove parts (ii) and (iii), one can proceed as follows. If job k
is not a new-max job, then it must be inserted in Sp_; as the last job in a
segment belonging to some new-max job £. It then remains to be shown that, if
necessary, the optimal schedule $* can be changed without an increase in the
objective so that job k occupies the same position relative to those jobs that are
in Sk. Depending upon the position of job k in §* a distinction has to be made
between cases (ii) and (iii). In case (ii) it is assumed that job k is scheduled
before job ¢ in S* and in case (iii) it is assumed that job k is scheduled after
job £ in S&*. Again, in both cases it has to be shown that modifying S* in a
way that job k ends up in the same position relative to the other jobs that are
in Sk does not change the value of the objective function. This again can be
shown through adjacent sequence interchange arguments that are left to the
reader. O

It can be shown easily that the WSPT-MCI algorithm runs in O(n?) time.
It can also be shown that the permutation sequence generated by WSPT-MCI
remains optimal even when the optimal schedule does not have to be a permu-
tation sequence.

The proportionate permutation flow shop model can be generalized to include
machines with different speeds. If the speed of machine 7 is v;, then the time job j
spends on machine ¢ is p;; = p;/v;. The machine with the smallest v; is called
the bottleneck machine. The makespan is now no longer schedule independent.

Theorem 6.3.6. If in a proportionate permutation flow shop with different
speeds the first (last) machine is the bottleneck, then LPT (SPT) minimizes the
makespan.

Proof. From the reversibility property it immediately follows that it suffices to
prove only one of the two results stated in the theorem. Only the case where
the last machine is the bottleneck is shown here.

Consider first the special subcase with

Um <wv < min (v27 s 7vm—1);

that is, the last machine is the bottleneck and the first machine requires the
second longest processing times for each one of the n jobs. It is easy to see that
in such a flow shop the critical path only turns to the right at machine m and
therefore turns down only once at some job ji in the sequence ji, ..., j,. So the
critical path starts out on machine 1 going to the right, turns down at job ji
and goes all the way down to machine m before turning to the right again. That
SPT is optimal can be shown through a standard adjacent pairwise interchange
argument. Consider a schedule that is not SPT. There are two adjacent jobs
of which the first one is longer than the second. Interchanging these two jobs
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affects the makespan if and only if one of the two jobs is the job through which
the critical path goes from machine 1 to m. It can be shown that an interchange
then reduces the makespan and that SPT minimizes the makespan.

In order to complete the proof for the general case, call machine h an in-
termediate bottleneck if vy, < min (vq,...,vp—1). There may be a number of
intermediate bottlenecks in the proportionate flow shop. The arguments pre-
sented above for the case with the only intermediate bottleneck being machine
1 extend to the general case with multiple intermediate bottlenecks. The critical
path now only turns right at intermediate bottleneck machines. This structure
can be exploited again with an adjacent pairwise interchange argument showing
that SPT minimizes the makespan. a

Consider now the proportionate case of the flow shop with limited interme-
diate storage i.e., Fm | block,p;j = pj | Cimax-

Theorem 6.3.7. A schedule is optimal for Fm | block,p;; = p; | Crmax if
and only if it is an SPT-LPT schedule.

Proof. The makespan has to satisfy the inequality
n
Cmax > ij + (m - 1) maX(ph ce 7pn)7
j=1

as the R.H.S. is the optimal makespan when there are unlimited buffers between
any two successive machines. Clearly, the makespan with limited or no buffers
has to be at least as large. It suffices to show that the makespan under any
SPT-LPT schedule is equal to the lower bound, while the makespan under any
schedule that is not SPT-LPT is strictly larger than the lower bound.

That the makespan under any SPT-LPT schedule is equal to the lower bound
can be shown easily. Under the SPT part of the schedule the jobs are never
blocked. In other words, each job in this first part of the schedule, once started
on the first machine, proceeds through the system without stopping. If in the
SPT-LPT schedule ji,...,j, job ji is the job with the longest processing time,
then job ji departs the system at

k—1

Cj. = ijz +mpj,,.
=1

The jobs in the LPT part of the sequence, of course, do experience blocking
as shorter jobs follow longer jobs. However, it is clear that now, in this part of
the schedule, a machine never has to wait for a job. Every time a machine has
completed processing a job from the LPT part of the schedule, the next job is
ready to start (as shorter jobs follow longer jobs). So, after job ji has completed
its processing on machine m, machine m remains continuously busy until it has
completed all the remaining jobs. The makespan under an SPT-LPT schedule
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is therefore equal to the makespan under an SPT-LPT schedule in the case of
unlimited buffers. SPT-LPT schedules therefore have to be optimal.

That SPT-LPT schedules are the only schedules that are optimal can be
shown by contradiction. Suppose that another schedule, that is not SPT-LPT, is
also optimal. Again, the job with the longest processing time, job j, contributes
m times its processing to the makespan. However, there must be some job, say
job jn, (not the longest job) that is positioned in between two jobs that are both
longer. If job j;, appears in the schedule before job ji it remains on machine 1 for
an amount of time that is larger than its processing time, since it is blocked by
the preceding job on machine 2. So its contribution to the makespan is strictly
larger than its processing time, causing the makespan to be strictly larger than
the lower bound. If job j, appears in the schedule after job jg, then the jobs
following job j on machine m are not processed one after another without any
idle times in between. After job j, there is an idle time on machine m as the
next job has a processing time that is strictly larger than the processing time
of job jp. a

It can be shown easily that SPT is also optimal for F'm | block, p;; = p; |

ZCJ

6.4 Flexible Flow Shops with Unlimited Intermediate
Storage

The flexible flow shop is a machine environment with ¢ stages in series; at
stage [, I = 1,...,c, there are m; identical machines in parallel. There is an
unlimited intermediate storage between any two successive stages. The machine
environment in the first example of Section 1.1 constitutes a flexible flow shop.
Job j, 7 =1,...,n, has to be processed at each stage on one machine, any one
will do. The processing times of job j at the various stages are p1;,p2j, ..., Pe;-
Minimizing the makespan and total completion time are respectively referred
to as FFc || Cmax and FFc || > C;. The parallel machine environment as well
as the flow shop with unlimited intermediate storages are special cases of this
machine environment. As this environment is rather complex only the special
case with proportionate processing times, i.e., p1j = pa; = -+ = pe; = pj, is
considered here.

Consider F'Fc | pij = pj | Cmax. One would expect the LPT heuristic to
perform well in the nonpreemptive case and the LRPT heuristic to perform well
in the preemptive case. Of course, the LPT rule cannot guarantee an optimal
schedule; a single stage (a parallel machine environment) is already NP-hard.
The worst case behaviour of the LPT rule when applied to multiple stages in
series may be worse than when applied to a single stage.
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Example 6.4.1 (Minimizing Makespan in a Flexible Flow Shop)

Consider two stages with two machines in parallel at the first stage and a
single machine at the second stage. There are two jobs with p; = ps = 100
and a hundred jobs with p3 = py = --- = p1g2 = 1. It is clear that in order
to minimize the makespan one long job should go at time zero on machine 1
and the 100 short jobs should be processed on machine 2 between time 0 and
time 100. Under this schedule the makespan is 301. Under the LPT schedule
the makespan is 400. I

In a preemptive setting the LRPT rule is optimal for a single stage. When
there are multiple stages this is not true any more. The LRPT schedule has the
disadvantage that at the first stage all jobs are finished very late, leaving the
machines at the second stage idle for a very long time.

Consider now the proportionate flexible flow shop problem FFec | p;; =
p; | >-Cj. The SPT rule is known to be optimal for a single stage and for
any number of stages with a single machine at each stage. Consider now the
additional constraint where each stage has at least as many machines as the
previous stage (the flow shop is said to be diverging).

Theorem 6.4.2. The SPT rule is optimal for FFc | p;; =p; | > C; if
each stage has at least as many machines as the preceding stage.

Proof. Theorem 5.3.1 implies that SPT minimizes the total completion time
when the flexible flow shop consists of a single stage. It is clear that SPT not
only minimizes the total completion time in this case, but also the sum of the
starting times (the only difference between the sum of the completion times
and the sum of the starting times is the sum of the processing times, which is
independent of the schedule).

In a proportionate flexible flow shop with ¢ stages, the completion time of
job j at the last stage occurs at the earliest cp; time units after its starting
time at the first stage.

Consider now a flexible flow shop with the same number of machines at
each stage, say m. It is clear that under SPT each job when completed at one
stage does not have to wait for processing at the next stage. Immediately after
completion at one stage it can start its processing at the next stage (as all
preceding jobs have smaller processing times than the current job). So, under
SPT the sum of the completion times is equal to the sum of the starting times
at the first stage plus Z?=1 cpj. As SPT minimizes the sum of the starting
times at the first stage and job j must remain at least cp; time units in the
system, SPT has to be optimal. O

It is easy to verify that the SPT rule does not always lead to an optimal
schedule for arbitrary proportionate flexible flow shops. A counter-example with
only two stages can be found easily.
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6.5 Discussion

This chapter has an emphasis on the makespan objective. In most machine
environments the makespan is usually the easiest objective. In the flow shop
environment, the makespan is already hard when there are three or more ma-
chines in series. Other objectives tend to be even more difficult.

In any case, some research has been done on flow shops with the total comple-
tion time objective. Minimizing the total completion time in a two machine flow
shop, i.e., F2 || > Cj, is already strongly NP-Hard. Several integer program-
ming formulations have been proposed for this problem and various branch-
and-bound approaches have been developed. Still, only instances with 50 jobs
can be solved in a reasonable time. Minimizing the total completion time in a
proportionate flow shop is, of course, very easy and can be solved via the SPT
rule and minimizing the total weighted completion time in a proportionate flow
shop can also be solved in polynomial time.

Flow shops with due date related objective functions have received very little
attention in the literature. On the other hand, more complicated flow shops,
e.g., robotic cells, have received a considerable amount of attention.

Exercises (Computational)

6.1. Consider F'4 | prmu | Chpax with the following 5 jobs under the given
sequence ji,...,Js-

Jobs ji jo Jjs Jja Js
P1,jn 5 3 6 4 9
P2, 4 1
P3G T

P45y 8

W= 00 00
[SCREN B W]
Nele)iNe)
= Ot W

Find the critical path and compute the makespan under the given sequence.

6.2. Write the integer programming formulation of F'4 | prmu | Ciax with the
set of jobs in Exercise 6.1.

6.3. Apply the Slope heuristic to the set of jobs in Exercise 6.1. Is (Are) the
sequence(s) generated actually optimal?

6.4. Consider F4 | block | Cpax with 5 jobs and the same set of processing
times as in Exercise 6.1. Assume there is no buffer in between any two successive
machines. Apply the Profile Fitting heuristic to determine a sequence for this
problem. Take job j; as the first job. If there are ties consider all the possibilities.
Is (any one of) the sequence(s) generated optimal?
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6.5. Consider F4 | prmu | Ciax with the following jobs

jobs 1 2 3 4 5
p1,; 18 16 21 16 22
p2; 6 5 6 6 5
P3,j 5 4 5 5 4
P45 4 2 1 3 4

(a) Can this problem be reduced to a similar problem with a smaller num-
ber of machines and the same optimal sequence?

(b) Determine whether Theorem 6.1.4 can be applied to the reduced prob-
lem.

(¢) Find the optimal sequence.
6.6. Apply Algorithm 3.3.1 to find an optimal schedule for the proportionate
flow shop F3 | p;; = p;j | > U; with the following jobs.
jobs 1 2 3

5 3 4 4 9 3
17 19 21 22 24 24

Pj

d;

6.7. Find the optimal schedule for the instance of the proportionate flow shop
F2 | pij = pj | hmax with the following jobs.
jobs 1 2 3 4 5

; 5 3 6 4 9
hi(C;) 12¢/Cy 72 2Cs 54+ .5C, 66+ /Cs

6.8. Apply a variant of Algorithm 3.4.4 to find an optimal schedule for the
instance of the proportionate flow shop F2 | p;; = p; | >_ T; with the following
5 jobs.

jobs 1 234 5

p; 5 364 9
d; 41129 13

6.9. Consider F2 | block | Ciyax with zero intermediate storage and 4 jobs.
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(a) Apply Algorithm 4.4.5 to find the optimal sequence.
(b) Find the optimal sequence when there is an unlimited intermediate
storage.

6.10. Find the optimal schedule for a proportionate flexible flow shop FF?2 |
pi; = p; | Y. C; with three machines at the first stage and one machine at the
second stage. There are 5 jobs. Determine whether SPT is optimal.

jobs 1 2 3 45
pi 22225

Exercises (Theory)

6.11. Counsider the problem Fm || Cpax. Assume that the schedule does allow
one job to pass another while they are waiting for processing on a machine.

(a) Show that there always exists an optimal schedule that does not require
sequence changes between machines 1 and 2 and between machines m — 1
and m. (Hint: By contradiction. Suppose the optimal schedule requires a
sequence change between machines 1 and 2. Modify the schedule in such a
way that there is no sequence change and the makespan remains the same.)

(b) Find an instance of F4 || Cpax where a sequence change between ma-
chines 2 and 3 results in a smaller makespan than in the case where sequence
changes are not allowed.

6.12. Consider F'm | prmu | Cpax. Let
Pi1r =Pi2 = = Pin = Pi
for i =2,...,m — 1. Furthermore, let
P11 Ep12 < < Pin

and
Pm1 = Pm2 = " 2 Dmn-

Show that sequence 1,2,...,n, i.e., SPT(1)-LPT(m), is optimal.
6.13. Consider F'm | prmu | Cmax where p;; = a; + b;, i.e., the processing
time of job j on machine i consists of a component that is job dependent

and a component that is machine dependent. Find the optimal sequence when
a1 < as < --- < a,, and prove your result.

6.14. Consider Fm | prmu | Crax. Let pi; = a; + ib; with b; > —a;/m.

(a) Find the optimal sequence.
(b) Does the Slope heuristic lead to an optimal schedule?
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6.15. Consider F'2 || Crax.

(a) Show that the Slope heuristic for two machines reduces to sequencing
the jobs in decreasing order of pa; — p1;.

(b) Show that the Slope heuristic is not necessarily optimal for two ma-
chines.

(c) Show that sequencing the jobs in decreasing order of ps;/pi; is not
necessarily optimal either.

6.16. Consider F'3 || Cryax. Assume

S max p2; < min _pij
je{1,...,n} je{1,...,n}

and
max i <  min psj.
jelhomy P2 = et P
Show that the optimal sequence is the same as the optimal sequence for F2 ||
Crmax With processing times p;; where p}; = p1; + p2; and ph; = p2;j + psj-

6.17. Show that in the proportionate flow shop problem Fm | p;j = pj | Ciax &
permutation sequence is optimal in the class of schedules that do allow sequence
changes midstream.

6.18. Show that if in a sequence for F2 || Ciyax any two adjacent jobs j and k
satisfy the condition

min(p1;, pox) < min(pi, pa;)

then the sequence minimizes the makespan. (Note that this is a sufficiency
condition and not a necessary condition for optimality.)

6.19. Show that for Fm | prmu | Chax the makespan under an arbitrary
permutation sequence cannot be longer than m times the makespan under the
optimal sequence. Show how this worst case bound actually can be attained.

6.20. Consider a proportionate flow shop with two objectives, namely the total
completion time and the maximum lateness, i.e., Fm | p;; = p; | > Cj + Lmax-
Develop a polynomial time algorithm for this problem. (Hint: Parametrize on
the maximum lateness. Assume the maximum lateness to be z; then consider
new due dates d; + z which basically are hard deadlines. Start out with the
SPT rule and modify when necessary.)

6.21. Consider a proportionate flow shop with n jobs. Assume that there are
no two jobs with equal processing times. Determine the number of different
SPT-LPT schedules.

6.22. Prove Lemma 6.3.2.
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6.23. Provide a rigorous proof for part (i) of Theorem 6.3.5.

6.24. Show that the WSPT-MCT algorithm for Fm | prmu,p;; = p; | > w;C;
reduces to the SPT rule when the number of machines m is sufficiently large.

6.25. Consider the following hybrid between F'm | prmu | Chpax and F'm |
block | Cmax. Between some machines there is no intermediate storage and
between other machines there is an infinite intermediate storage. Suppose a job
sequence is given. Give a description of the graph through which the length of
the makespan can be computed.

Comments and References

The solution for the F2 || Cmax problem is presented in the famous paper by
S.M. Johnson (1954). The integer programming formulation of Fm || Cimax is
due to Wagner (1959) and the NP-Hardness proof for F3 || Ciax is from Garey,
Johnson and Sethi (1976). The slope heuristic for permutation flow shops is due
to Palmer (1965). Many other heuristics have been developed for Fm || Cumax;
see, for example, Campbell, Dudek and Smith (1970), Gupta (1972), Baker
(1975), Dannenbring (1977), Nawaz, Enscore and Ham (1983), Widmer and
Hertz (1989) and Taillard (1990). For complexity results with regard to various
types of objective functions, see Gonzalez and Sahni (1978b) and Du and Leung
(1993a, 1993b). For more focused research concerning the two machine flow shop
with the total completion time objective, see van de Velde (1990), Della Croce,
Narayan and Tadei (1996), Della Croce, Ghirardi and Tadei (2002), Akkan and
Karabati (2004), and Hoogeveen, van Norden and van de Velde (2006).

The flow shop with limited intermediate storage Fm | block | Crmax is stud-
ied in detail by Levner (1969), Reddy and Ramamoorthy (1972) and Pinedo
(1982). The reversibility result in Lemma 6.2.1 is due to Muth (1979). The
Profile Fitting heuristic is from McCormick, Pinedo, Shenker and Wolf (1989).
Wismer (1972) establishes the link between Fm | nwt | Cmax and the Travel-
ling Salesman Problem. Sahni and Cho (1979a), Papadimitriou and Kannelakis
(1980) and Rock (1984) obtain complexity results for Fm | nwt | Cmax. Goyal
and Sriskandarajah (1988) present a review of complexity results and approx-
imation algorithms for Fm | nwt | v. For an overview of models in the classes
Fm ||, Fm|block |~ and Fm |nwt |~, see Hall and Sriskandarajah (1996).

For results regarding proportionate flow shops, see Ow (1985), Pinedo (1982,
1985), and Shakhlevich, Hoogeveen and Pinedo (1998). A definition of SPT-
LPT schedules appears in Pinedo (1982). The polynomial time algorithm for the
total weighted completion time objective is due to Shakhlevich, Hoogeveen and
Pinedo (1998). Theorem 6.3.6 is from Eck and Pinedo (1988). For an overview
of Fm || Cmax models with special structures (including the proportionate case)
that can be solved easily, see Monma and Rinnooy Kan (1983); their framework
includes also the results obtained earlier by Smith, Panwalkar and Dudek (1975,
1976) and Szwarc (1971, 1973, 1978).
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Theorem 6.4.2 is from Eck and Pinedo (1988). For makespan results with
regard to the flexible flow shops, see Sriskandarajah and Sethi (1989). Yang,
Kreipl and Pinedo (2000) present heuristics for the flexible flow shop with the
total weighted tardiness as objective. For more applied issues concerning flexible
flow shops, see Hodgson and McDonald (1981a, 1981b, 1981c).

Dawande, Geismar, Sethi and Sriskandarajah (2007) present an extensive
overview of one of the more important application areas of flow shops, namely
robotic cells.
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This chapter deals with multi-operation models that are different from the flow
shop models discussed in the previous chapter. In a flow shop model all jobs
follow the same route. When the routes are fixed, but not necessarily the same
for each job, the model is called a job shop. If a job in a job shop has to visit
certain machines more than once, the job is said to recirculate. Recirculation
is a common phenomenon in the real world. For example, in semiconductor
manufacturing jobs have to recirculate several times before they complete all
their processing.

The first section focuses on representations and formulations of the classical
job shop problem with the makespan objective and no recirculation. It also
describes a branch-and-bound procedure that is designed to find the optimal
solution. The second section describes a popular heuristic for job shops with the
makespan objective and no recirculation. This heuristic is typically referred to as
the Shifting Bottleneck heuristic. The third section focuses on a more elaborate
version of the shifting bottleneck heuristic that is designed specifically for the
total weighted tardiness objective. The fourth section describes an application
of a constraint programming procedure for the minimization of the makespan.
The last section discusses possible extensions.

7.1 Disjunctive Programming and Branch-and-Bound

Consider J2 || Cpax. There are two machines and n jobs. Some jobs have to be
processed first on machine 1 and then on machine 2, while the remaining jobs

M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 183
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have to be processed first on machine 2 and then on machine 1. The processing
time of job j on machine 1 (2) is p1; (p2;). The objective is to minimize the
makespan.

This problem can be reduced to F2 || Cpax as follows. Let J; 2 denote the
set of jobs that have to be processed first on machine 1, and J; the set of
jobs that have to be processed first on machine 2. Observe that when a job
from J; 2 has completed its processing on machine 1, postponing its processing
on machine 2 does not affect the makespan as long as machine 2 is kept busy.
The same can be said about a job from J1; if such a job has completed its
processing on machine 2, postponing its processing on machine 1 (as long as
machine 1 is kept busy) does not affect the makespan. Hence a job from Jp o
has on machine 1 a higher priority than any job from .J; 1, while a job from
J2,1 has on machine 2 a higher priority than any job from Ji 2. It remains to
be determined in what sequence jobs in Jj 2 go through machine 1 and jobs in
J2,1 go through machine 2. The first of these two sequences can be determined
by considering J; 2 as an F2 || Cpax problem with machine 1 set up first
and machine 2 set up second and the second sequence can be determined by
considering Jz 1 as another F'2 || Cphax problem with machine 2 set up first and
machine 1 second. This leads to SPT(1)-LPT(2) sequences for each of the two
sets, with priorities between sets as specified above.

This two machine problem is one of the few job shop scheduling problems
for which a polynomial time algorithm can be found. The few other job shop
scheduling problems for which polynomial time algorithms can be obtained
usually require all processing times to be either 0 or 1.

The remainder of this section is dedicated to the Jm || Cinax problem with
arbitrary processing times and no recirculation.

Minimizing the makespan in a job shop without recirculation, Jm || Cpax,
can be represented in a very nice way by a disjunctive graph. Consider a directed
graph G with a set of nodes N and two sets of arcs A and B. The nodes N
correspond to all the operations (7, ) that must be performed on the n jobs.
The so-called conjunctive (solid) arcs A represent the routes of the jobs. If
arc (i,7) — (k,7) is part of A, then job j has to be processed on machine ¢
before it is processed on machine k, i.e., operation (i,j) precedes operation
(k,j). Two operations that belong to two different jobs and that have to be
processed on the same machine are connected to one another by two so-called
disjunctive (broken) arcs that go in opposite directions. The disjunctive arcs
B form m cliques of double arcs, one clique for each machine. (A clique is
a term in graph theory that refers to a graph in which any two nodes are
connected to one another; in this case each connection within a clique consists
of a pair of disjunctive arcs.) All operations (nodes) in the same clique have to
be done on the same machine. All arcs emanating from a node, conjunctive as
well as disjunctive, have as length the processing time of the operation that is
represented by that node. In addition there is a source U and a sink V', which
are dummy nodes. The source node U has n conjunctive arcs emanating to the
first operations of the n jobs and the sink node V has n conjunctive arcs coming
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Source Sink

Fig. 7.1 Directed graph for job shop with makespan as objective

in from all the last operations. The arcs emanating from the source have length
zero (see Figure 7.1). This graph is denoted by G = (N, A, B).

A feasible schedule corresponds to a selection of one disjunctive arc from
each pair such that the resulting directed graph is acyclic. This implies that a
selection of disjunctive arcs from a clique has to be acyclic. Such a selection
determines the sequence in which the operations are to be performed on that
machine. That a selection from a clique has to be acyclic can be argued as
follows: If there were a cycle within a clique, a feasible sequence of the operations
on the corresponding machine would not have been possible. It may not be
immediately obvious why there should not be any cycle formed by conjunctive
arcs and disjunctive arcs from different cliques. However, such a cycle would
correspond also to a situation that is infeasible. For example, let (h,j) and
(i,4) denote two consecutive operations that belong to job j and let (¢, k) and
(h, k) denote two consecutive operations that belong to job k. If under a given
schedule operation (i, ) precedes operation (i, k) on machine ¢ and operation
(h, k) precedes operation (h,7) on machine h, then the graph contains a cycle
with four arcs, two conjunctive arcs and two disjunctive arcs from different
cliques. Such a schedule is physically impossible. Summarizing, if D denotes
the subset of the selected disjunctive arcs and the graph G(D) is defined by
the set of conjunctive arcs and the subset D, then D corresponds to a feasible
schedule if and only if G(D) contains no directed cycles.

The makespan of a feasible schedule is determined by the longest path in
G(D) from the source U to the sink V. This longest path consists of a set of
operations of which the first starts at time 0 and the last finishes at the time of
the makespan. Each operation on this path is immediately followed by either
the next operation on the same machine or the next operation of the same job
on another machine. The problem of minimizing the makespan is reduced to
finding a selection of disjunctive arcs that minimizes the length of the longest
path (that is, the critical path).

There are several mathematical programming formulations for the job shop
without recirculation, including a number of integer programming formulations.
However, the formulation most often used is the so-called disjunctive program-
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ming formulation (see also Appendix A). This disjunctive programming for-
mulation is closely related to the disjunctive graph representation of the job
shop.

To present the disjunctive programming formulation, let the variable y;;
denote the starting time of operation (i, j). Recall that set N denotes the set
of all operations (¢,7), and set A the set of all routing constraints (i,j) —
(k, ) that require job j to be processed on machine i before it is processed on
machine k. The following mathematical program minimizes the makespan.

minimize Chyax

subject to
Ykj — Yij = Dij for all (i,7) — (k,j) € A
CVmax — Yij > Pij for all (27.7) eEN
Yij — Yil = Pit O Ya — Yij = Dij for all (i,1) and (i,7), i=1,...,m
¥ij >0 for all (i,7) € N

In this formulation, the first set of constraints ensure that operation (k, j)
cannot start before operation (2, j) is completed. The third set of constraints are
called the disjunctive constraints; they ensure that some ordering exists among
operations of different jobs that have to be processed on the same machine.
Because of these constraints this formulation is referred to as a disjunctive
programming formulation.

Example 7.1.1 (Disjunctive Programming Formulation)

Consider the following example with four machines and three jobs. The route,
i.e., the machine sequence, as well as the processing times are given in the
table below.

jobs machine sequence processing times
1 17233 pb11 = ]-07 b21 = 87 P31 = 4
2 2317433 P22:87 P12:37 p42:57 pd2:6
3 1,2,4 P13 =4, p3=7, pi3=3

The objective consists of the single variable Cp,ax. The first set of constraints
consists of seven constraints: two for job 1, three for job 2 and two for job 3.
For example, one of these is

Y21 — Y11 > 10 (= pn1).
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The second set consists of ten constraints, one for each operation. An example
is

Cmax — Y11 > 10 (: p11)~
The set of disjunctive constraints contains eight constraints: three each for
machines 1 and 2 and one each for machines 3 and 4 (there are three opera-
tions to be performed on machines 1 and 2 and two operations on machines 3
and 4). An example of a disjunctive constraint is

Y11 —y12 >3 (=pi2) or yi2 —y11 > 10 (= p11).

The last set includes ten nonnegativity constraints, one for each starting
time. I

That a scheduling problem can be formulated as a disjunctive program does
not imply that there is a standard solution procedure available that will work
satisfactorily. Minimizing the makespan in a job shop is a very hard problem
and solution procedures are either based on enumeration or on heuristics.

To obtain optimal solutions branch-and-bound methods are required. The
branching as well as the bounding procedures that are applicable to this prob-
lem are usually of a special design. In order to describe one of the branching
procedures a specific class of schedules is considered.

Definition 7.1.2 (Active Schedule). A feasible schedule is called active
if it cannot be altered in any way such that some operation is completed earlier
and no other operation is completed later.

A schedule being active implies that when a job arrives at a machine, this job
is processed in the prescribed sequence as early as possible. An active schedule
cannot have any idle period in which the operation of a waiting job could fit.

From the definition it follows that an active schedule has the property that
it is impossible to reduce the makespan without increasing the starting time
of some operation. Of course, there are many different active schedules. It can
be shown that there exists among all possible schedules an active schedule that
minimizes the makespan.

A branching scheme that is often used is based on the generation of all active
schedules. All such active schedules can be generated by a simple algorithm. In
this algorithm {2 denotes the set of all operations of which all predecessors
already have been scheduled (i.e., the set of all schedulable operations) and r;;
the earliest possible starting time of operation (i, j) in §2. The set {2’ is a subset
of set (2.

Algorithm 7.1.3 (Generation of all Active Schedules)
Step 1. (Initial Condition)

Let §2 contain the first operation of each job;
Let ;5 = 0, for all (i,7) € £2.
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Step 2. (Machine Selection)

Compute for the current partial schedule

t(£2) = min {r;; + pi;
(@) = min (ri +ps}

and let i* denote the machine on which the minimum is achieved.

Step 3. (Branching)

Let 2" denote the set of all operations (i*,j) on machine i* such that

Tix g < t(Q)

For each operation in (2" consider an (extended) partial schedule

with that operation as the next one on machine i*.

For each such (extended) partial schedule delete the operation from (2,
include its immediate follower in 2 and return to Step 2. I

Algorithm 7.1.3 is the basis for the branching process. Step 3 performs the
branching from the node that is characterized by the given partial schedule;
the number of branches is equal to the number of operations in 2. With this
algorithm one can generate the entire tree and the nodes at the very bottom of
the tree correspond to all the active schedules.

So a node V in the tree corresponds to a partial schedule and the partial
schedule is characterized by a selection of disjunctive arcs that corresponds to
the order in which all the predecessors of a given set {2 have been scheduled. A
branch out of node V corresponds to the selection of an operation (i*,j) € 2’
as the next one to go on machine ¢*. The disjunctive arcs (i*,7) — (i*, k) then
have to be added to machine i* for all operations (i*, k) still to be scheduled
on machine ¢*. This implies that the newly created node at the lower level, say
node V', which corresponds to a partial schedule with only one more operation
in place, contains various additional disjunctive arcs that are now selected (see
Figure 7.2). Let D’ denote the set of disjunctive arcs selected at the newly
created node. Refer to the graph that includes all the conjunctive arcs and set
D’ as graph G(D’). The number of branches sprouting from node V is equal to
the number of operations in (2.

To find a lower bound for the makespan at node V', consider graph G(D’).
The length of the critical path in this graph already results in a lower bound
for the makespan at node V’. Call this lower bound LB(V’). Better (higher)
lower bounds for this node can be obtained as follows.

Consider machine i and assume that all other machines are allowed to pro-
cess, at any point in time, multiple operations simultaneously (since not all
disjunctive arcs have been selected yet in G(D'), it may be the case that, at
some points in time, multiple operations require processing on the same ma-
chine at the same time). However, machine ¢ must process its operations one
after another. First, compute the earliest possible starting times 7;; of all the
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Node V
Node V' Node V"
selection of (i*, j) selection of (i*, 1)
All disjunctive arcs All disjunctive arcs
@@*,j) > (% k), @i 1) - (i* k),
for all operations (i*, k) for all operations (i*, k)
still to be scheduled, still to be scheduled,
are added. are added.

O ={@*)) @* D}

Fig. 7.2 Branching tree for branch-and-bound approach

operations (Z,j) on machine ¢; that is, determine in graph G(D’) the length
of the longest path from the source to node (i, 7). Second, for each operation
(i,4) on machine ¢, compute the minimum amount of time needed between the
completion of operation (4, j) and the lower bound LB(V’), by determining the
longest path from node (4,7) to the sink in G(D’). This amount of time, to-
gether with the lower bound on the makespan, translates into a due date d;;
for operation (4, j), i.e., di; is equal to LB(V’) minus the length of the longest
path from node (i, j) to the sink plus p;;.

Consider now the problem of sequencing the operations on machine i as a
single machine problem with jobs arriving at different release dates, no pre-
emptions allowed and the maximum lateness as the objective to be minimized,
i.e.,, 1| 7rj | Lmax (see Section 3.2). Even though this problem is strongly NP-
hard, there are relatively effective algorithms that generate good solutions. The
optimal sequence obtained for this problem implies a selection of disjunctive
arcs that can be added (temporarily) to D’. This then may lead to a longer
overall critical path in the graph, a larger makespan and a better (higher)
lower bound for node V’'. At node V' this can be done for each of the m ma-
chines separately. The largest makespan obtained this way can be used as a
lower bound at node V'. Of course, the temporary disjunctive arcs inserted to
obtain the lower bound are deleted as soon as the best lower bound is deter-
mined.

Although it appears somewhat of a burden to have to solve m strongly
NP-hard scheduling problems in order to obtain one lower bound for another
strongly NP-hard problem, this type of bounding procedure has performed rea-
sonably well in computational experiments.
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Fig. 7.3 Precedence graphs at Level 1 in Example 7.1.4

Example 7.1.4 (Application of Branch-and-Bound)

Consider the instance described in Example 7.1.1. The initial graph contains
only conjunctive arcs and is depicted in Figure 7.3.a. The makespan corre-
sponding to this graph is 22. Applying the branch-and-bound procedure to
this instance results in the following branch-and-bound tree.

Lewvel 1: Applying Algorithm 7.1.3 yields

2= {(L 1)’ (2’2)3 (133)}>

#(£2) = min (0 + 10,0 + 8,0 + 4) = 4,
=1,
2 ={(1,1),(1,3)}.

So there are two nodes of interest at level 1, one corresponding to operation
(1,1) being processed first on machine 1 and the other to operation (1,3)
being processed first on machine 1.

If operation (1, 1) is scheduled first, then the two disjunctive arcs depicted
in Figure 7.3.b are added to the graph. The node is characterized by the two
disjunctive arcs
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The addition of these two disjunctive arcs immediately increases the lower
bound on the makespan to 24. In order to improve this lower bound one can
generate for machine 1 an instance of 1 | 7; | Limax. The release date of job j
in this single machine problem is determined by the longest path from the
source U to node (1, j) in Figure 7.3.b. The due date of job j is computed by
finding the longest path from node (1, ) to the sink, subtracting p;; from the
length of this longest path, and subtracting the resulting value from 24. These
computations lead to the following single machine problem for machine 1.

jobs 1 2 3
Pi1j 10 3 4
T1j 0 10 10
di; 10 13 14

The sequence that minimizes Lyax is 1,2, 3 with L.« = 3. This implies that
a lower bound for the makespan at the corresponding node is 24 + 3 = 27.
An instance of 1 | 7j | Lmax corresponding to machine 2 can be generated in
the same way. The release dates and due dates also follow from Figure 7.3.b
(assuming a makespan of 24), and are as follows.

jobs 1 2 3
p2; 8 8 T
24 10 0 14
dyj 20 10 21

The optimal sequence is 2,1,3 with Lyax = 4. This yields a better lower
bound for the makespan at the node that corresponds to operation (1,1)
being scheduled first, i.e., 24 + 4 = 28. Analyzing machines 3 and 4 in the
same way does not yield a better lower bound.

The second node at Level 1 corresponds to operation (1, 3) being scheduled
first. If (1, 3) is scheduled to go first, two different disjunctive arcs are added
to the original graph, yielding a lower bound of 26. The associated instance
of the maximum lateness problem for machine 1 has an optimal sequence
3,1,2 with Ly,,x = 2. This implies that the lower bound for the makespan at
this node, corresponding to operation (1, 3) scheduled first, is also equal to
28. Analyzing machines 2, 3 and 4 does not result in a better lower bound.

The next step is to branch from node (1,1) at Level 1 and generate the
nodes at the next level.
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No disjunctive arcs

Level 0 (Figure 7.3a)
11 (1,3)
Level 1 scheduled scheduled
_ first on _ first on
L.B =28 machine 1 L.B =28 machine 1

(1, 1) scheduled first
Level 2 Q on machine 1
L.B =28 (2,2) scheduled first

on machine 2

Fig. 7.4 Branching tree in Example 7.1.4

Level 2: Applying Algorithm 7.1.3 now yields

2={22), 2,1), (1,3)},
t(£2) = min (0+ 8,10+ 8,10+ 4) =8,
=2
2" ={(2,2)}.
There is one node of interest at this part of Level 2, the node corresponding
to operation (2,2) being processed first on machine 2 (see Figure 7.4). Two

disjunctive arcs are added to the graph, namely (2,2) — (2,1) and (2,2) —
(2,3). So this node is characterized by a total of four disjunctive arcs:

(1,1) = (1,2),
(1,1) = (1,3)
(2,2) = (2,1)
(2,2) = (2,3)

This leads to an instance of 1 | 7j | Lmax for machine 1 with the following
release dates and due dates (assuming a makespan of 28).

3),
1),

.3

jobs 1 2 3
P1j 10 3 4
r; 010 10

di; 14 17 18



7.2 The Shifting Bottleneck Heuristic and the Makespan 193

Machinel| 1 3 | 2
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MachineZ| 2 || 1 3 |

Machine 3 1
Machine 4 2

\ \ \ \
0 10 20 30 ¢

Fig. 7.5 Gantt chart for J4 || Cnax (Example 7.1.4)

The optimal job sequence is 1, 3,2 and Ly,,x = 0. This implies that the lower
bound for the makespan at the corresponding node is 28 +0 = 28. Analyzing
machines 2, 3 and 4 in the same way does not increase the lower bound.

Continuing the branch-and-bound procedure results in the following job
sequences for the four machines.

machine job sequence

1 1,3,2 (or 1,2,3)
2 2,1,3

3 1,2

4 2,3

The makespan under this optimal schedule is 28 (see Figure 7.5). I

The approach described above is based on complete enumeration and is guar-
anteed to lead to an optimal schedule. However, with a large number of machines
and a large number of jobs the computation time is prohibitive. Already with
20 machines and 20 jobs it is hard to find an optimal schedule.

It is therefore necessary to develop heuristics that lead to reasonably good
schedules in a reasonably short time. The next section describes a well-known
heuristic with an excellent track record.

7.2 The Shifting Bottleneck Heuristic and the Makespan

One of the most successful heuristic procedures developed for Jm || Cpax is the
Shifting Bottleneck heuristic.

In the following overview of the Shifting Bottleneck heuristic M denotes the
set of all m machines. In the description of an iteration of the heuristic it is
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assumed that in previous iterations a selection of disjunctive arcs already has
been fixed for a subset My of machines. So for each one of the machines in M,
a sequence of operations has already been determined.

An iteration determines which machine in M — M, has to be included next
in set My. The sequence in which the operations on this machine have to be
processed is also generated in this iteration. In order to select the machine to
be included next in My, an attempt is made to determine which one of the
machines still to be scheduled would cause in one sense or another the severest
disruption. To determine this, the original directed graph is modified by deleting
all disjunctive arcs of the machines still to be scheduled (i.e., the machines in
set M — Mj) and keeping only the relevant disjunctive arcs of the machines in
set My (one from every pair). Call this graph G’. Deleting all disjunctive arcs of
a specific machine implies that all operations on this machine, which originally
were supposed to be done on this machine one after another, now may be done
in parallel (as if the machine has infinite capacity, or equivalently, each one of
these operations has the machine for itself). The graph G’ has one or more
critical paths that determine the corresponding makespan. Call this makespan
Cmax(MO)~

Suppose that operation (i,7), i € {M — My}, has to be processed in a time
window of which the release date and due date are determined by the critical
(longest) paths in G’, i.e., the release date is equal to the longest path in G’ from
the source U to node (7, ) and the due date is equal to Cpax(Mp), minus the
longest path from node (7, j) to the sink, plus p;;. Consider each of the machines
in M — My as a separate 1 | rj | Liax problem. As stated in the previous section
this problem is strongly NP-hard, but procedures have been developed that
perform reasonably well. The minimum L, of the single machine problem
corresponding to machine i is denoted by Lyax(i) and is a measure of the
criticality of machine i.

After solving all these single machine problems, the machine with the largest
maximum lateness is chosen. Among the remaining machines, this machine is
in a sense the most critical or the ”bottleneck” and therefore the one to be
included next in My. Label this machine &, call its maximum lateness Lyax (k)
and schedule it according to the optimal solution obtained for the single machine
problem associated with this machine. If the disjunctive arcs that specify the
sequence of operations on machine k are inserted in graph G’, then the makespan
of the current partial schedule increases by at least Lyax(k), that is,

Crnax(MO U k) Z Cmax(MO) + Lmax(k>-

Before starting the next iteration and determining the next machine to be
scheduled, one additional step has to be done within the current iteration. In
this additional step all the machines in the original set M, are resequenced in
order to see if the makespan can be reduced. That is, a machine, say machine [,
is taken out of set My and a graph G” is constructed by modifying graph G’
through the inclusion of the disjunctive arcs that specify the sequence of oper-
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ations on machine k and the exclusion of the disjunctive arcs associated with
machine [. Machine [ is resequenced by solving the corresponding 1 | 7 | Liax
problem with the release and due dates determined by the critical paths in
graph G”. Resequencing each of the machines in the original set My completes
the iteration.

In the next iteration the entire procedure is repeated and another machine
is added to the current set My U k.

The shifting bottleneck heuristic can be summarized as follows.

Algorithm 7.2.1 (Shifting Bottleneck Heuristic)
Step 1. (Initial Conditions)

S@t Mo = Q)
Graph G is the graph with all the conjunctive arcs and no disjunctive arcs.
Set Crnax(Mo) equal to the longest path in graph G.

Step 2. (Analysis of machines still to be scheduled)

Do for each machine i in set M — My the following:

generate an instance of 1| rj | Lmax

(with the release date of operation (i,j) determined by the longest path
in graph G from the source node U to node (i,7);

and the due date of operation (i,j) determined by Cax(Mo) minus
the longest path in graph G from node (i,7) to the sink, plus p;;).
Minimize the Lmax in each one of these single machine subproblems.
Let Linax(i) denote the minimum L.y in the subproblem
corresponding to machine 1.

Step 3. (Bottleneck selection and sequencing)

Let
Lax(k) = L i
nax( ) ze{g\n/lfi)]{wo}( max(l))
Sequence machine k according to the sequence obtained
in Step 2 for that machine.
Insert all the corresponding disjunctive arcs in graph G.
Insert machine k in My.

Step 4. (Resequencing of all machines scheduled earlier)

Do for each machine i € {My — k} the following:

delete from G the disjunctive arcs corresponding to machine i;
formulate a single machine subproblem for machine i with
release dates and due dates of the operations determined by
longest path calculations in G.

Find the sequence that minimizes Lyax (i) and

insert the corresponding disjunctive arcs in graph G.

Step 5. (Stopping criterion)
If My = M then STOP, otherwise go to Step 2. I
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The structure of the shifting bottleneck heuristic shows the relationship be-
tween the bottleneck concept and more combinatorial concepts such as critical
(longest) path and maximum lateness. A critical path indicates the location
and the timing of a bottleneck. The maximum lateness gives an indication of
the amount by which the makespan increases if a machine is added to the set
of machines already scheduled.

The remainder of this section contains two examples that illustrate the use
of the shifting bottleneck heuristic.

Example 7.2.2 (Application of Shifting Bottleneck Heuristic)

Consider the instance with four machines and three jobs described in Exam-
ples 7.1.1 and 7.1.4. The routes of the jobs, i.e., the machine sequences, and
the processing times are given in the following table:

jobs machine sequence processing times
1 17233 pb11 = ]-07 b21 = 87 P31 = 4
2 2713473 P22 = 87 P12 = 37 P42 = 57 P32 = 6
3 1,24 pi3=4, pa3 =7, paz=3

Iteration 1: Initially, set My is empty and graph G’ contains only conjunctive
arcs and no disjunctive arcs. The critical path and the makespan Ciax(0)
can be determined easily: this makespan is equal to the maximum total
processing time required for any job. The maximum of 22 is achieved in this
case by both jobs 1 and 2. To determine which machine to schedule first,
each machine is considered as a 1 | rj | Limax problem with the release dates
and due dates determined by the longest paths in G’ (assuming a makespan
of 22).

The data for the 1 | 7; | Liax problem corresponding to machine 1 are
presented in the following table.

jobs 1 2 3
P1j 10 3 4
7"1j 0 8 0
dij 10 11 12

The optimal sequence turns out to be 1,2, 3 with Lyax(1) = 5.
The data for the subproblem regarding machine 2 are:
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The optimal sequence for this problem is 2,3, 1 with Lax(2) = 5. Similarly,
it can be shown that
Lmax(3) =4

and
Lax(4) = 0.

From this it follows that either machine 1 or machine 2 may be considered a
bottleneck. Breaking the tie arbitrarily, machine 1 is selected to be included
in My. The graph G” is obtained by fixing the disjunctive arcs corresponding
to the sequence of the jobs on machine 1 (see Figure 7.6). It is clear that

Cmax({]-}) - Cmax((b) + Lmax(]-) =22 + 5=2T7.

Iteration 2: Given that the makespan corresponding to G” is 27, the critical
paths in the graph can be determined. The three remaining machines have to
be analyzed separately as 1 | 7j | Lyas problems. The data for the instance
concerning machine 2 are:

jobs 1 2 3
p2; 8 8 T
24 10 0 17

do; 23 10 24
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The optimal schedule is 2, 1,3 and the resulting Ly,ax(2) = 1. The data for
the instance corresponding to machine 3 are:

jobs 1 2
p3; 4 6
7”3]' 18 18
ds; 27 27

Both sequences are optimal and Lyax(3) = 1. Machine 4 can be analyzed
in the same way and the resulting L,.x(4) = 0. Again, there is a tie and
machine 2 is selected to be included in My. So My = {1,2} and

Crax({1,2}) = Cruax({1}) + Limax(2) = 27+ 1 = 28.

The disjunctive arcs corresponding to the job sequence on machine 2 are
added to G” and graph G is obtained. At this point, still as a part of iter-
ation 2, an attempt may be made to decrease Cpax({1,2}) by resequencing
machine 1. It can be checked that resequencing machine 1 does not give any
improvement.

Iteration 3: The critical path in G can be determined and machines 3 and
4 remain to be analyzed. These two problems turn out to be very simple
with both having a zero maximum lateness. Neither one of the two machines
constitutes a bottleneck in any way.

The final schedule is determined by the following job sequences on the four
machines: job sequence 1,2, 3 on machine 1; job sequence 2, 1, 3 on machine 2;
job sequence 2,1 on machine 3 and job sequence 2,3 on machine 4. The
makespan is 28. I

The implementation of the shifting bottleneck technique in practice often
tends to be more complicated than the heuristic described above. The solution
procedure for the single machine subproblem must deal with some additional
complications.

The single machine maximum lateness problem that has to be solved repeat-
edly within each iteration of the heuristic may at times be slightly different
and more complicated than the 1 | rj | Lyax problem described in Chapter 3
(which is also the problem used for determining the lower bounds in the previ-
ous section). In the single machine problem that has to be solved in the shifting
bottleneck heuristic, the operations on a given machine may have to be subject
to a special type of precedence constraints. It may be the case that an opera-
tion that has to be processed on a particular machine can only be processed on
that machine after certain other operations have completed their processing on
that machine. These precedence constraints may be imposed by the sequences
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of the operations on the machines that already have been scheduled in earlier
iterations.

It may even be the case that two operations that are subject to such con-
straints not only have to be processed in the given order, they may also have
to be processed a given amount of time apart from one another. That is, in
between the processing of two operations that are subject to these precedence
constraints a certain minimum amount of time (i.e., a delay) may have to elapse.

The lengths of the delays are also determined by the sequences of the op-
erations on the machines already scheduled. These precedence constraints are
therefore referred to as delayed precedence constraints.

The next example illustrates the potential need for delayed precedence con-
straints in the single machine subproblem. Without these constraints the shift-
ing bottleneck heuristic may end up in a situation where there is a cycle in the
disjunctive graph and the corresponding schedule is infeasible. The following
example illustrates how sequences on machines already scheduled (machines in
M) impose constraints on machines still to be scheduled (machines in M — M).

Example 7.2.3 (Delayed Precedence Constraints)

Consider the following instance.

jobs machine sequence processing times

1 132 P11 = ]-7 P21 = 1
2 2,1 pe2=1 pr2a=1
3 3 p33 =4
4 3 Dp3a =4

Applying the shifting bottleneck heuristic results in the following three
iterations.
Iteration 1: The first iteration consists of the optimization of three subprob-
lems. The data for the three subproblems associated with machines 1, 2, and
3 are tabulated below.

jobs 12 jobs 12 jobs 12
plj 11 pgj 11 p3j 44
15 01 725 10 T35 00
di; 34 dyj 43 ds; 44

The optimal solutions for machines 1 and 2 have Ly, < 0, while that for
machine 3 has Lyax = 4. So machine 3 is scheduled first and arc (3,4) —
(3,3) is inserted.

Tteration 2: The new set of subproblems are associated with machines 1
and 2.
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a) Second iteration b) Final graph
grap

Fig. 7.7 Application of shifting bottleneck heuristic in Example 7.2.3

jobs 12 jobs 12
p; 11 p2; 11
T1j 01 25 10
d1j 78 de 87
The optimal solutions for machines 1 and 2 both have L, = —6, so

we arbitrarily select machine 1 to be scheduled next. Arc (1,2) — (1,1) is
inserted (see Figure 7.7.a).
Iteration 3: One subproblem remains, and it is associated with machine 2.

jobs 12
pgj 11
24 30
dyj 85

Any schedule for machine 2 yields an Ly < 0. If a schedule would be
selected arbitrarily and arc (2,1) — (2,2) would be inserted, then a cycle is
created in the graph, and the overall schedule is infeasible (see Figure 7.7.b).

This situation could have been prevented by imposing delayed precedence
constraints. After scheduling machine 1 (in iteration 2) there is a path from
(2,2) to (2,1) with length 3. After iteration 2 has been completed a delayed
precedence constraint can be generated for subsequent iterations. Operation
(2,2) must precede operation (2,1) and, furthermore, there must be a delay
of 2 time units in between the completion of operation (2,2) and the start
of operation (2,1). With this constraint iteration 3 generates a sequence for
machine 2 that results in a feasible schedule. I
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Extensive numerical research has shown that the Shifting Bottleneck heuris-
tic is extremely effective. When applied to a standard test problem with 10
machines and 10 jobs that had remained unsolved for more than 20 years, the
heuristic obtained a very good solution very fast. This solution turned out to
be optimal after a branch-and-bound procedure found the same result and veri-
fied its optimality. The branch-and-bound approach, in contrast to the heuristic,
needed many hours of CPU time. The disadvantage of the heuristic is, of course,
that there is no guarantee that the solution it reaches is optimal.

The Shifting Bottleneck heuristic can be adapted in order to be applied to
more general models than the job shop model considered above, i.e., it can be
applied also to flexible job shops with recirculation.

7.3 The Shifting Bottleneck Heuristic and the Total
Weighted Tardiness

This section describes an approach for Jm || Y~ w;T}; that combines a variant of
the shifting bottleneck heuristic discussed in the previous section with a priority
rule called the Apparent Tardiness Cost first (ATC) rule.

The disjunctive graph representation for Jm || Y w;T} is different from that
for Jm || Cinax- In the makespan problem only the completion time of the last
job to leave the system is of importance. There is therefore a single sink in
the disjunctive graph. In the total weighted tardiness problem the completion
times of all n jobs are of importance. Instead of a single sink, there are now n
sinks, i.e., V1,...,V, (see Figure 7.8). The length of the longest path from the
source U to the sink Vj represents the completion time of job k.

The approach can be described as follows. Machines are again scheduled one
at a time. At the start of a given iteration all machines in set My have already

Fig. 7.8 Directed graph for job shop with total weighted tardiness
objective
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been scheduled (i.e., all disjunctive arcs have been selected for these machines)
and in this iteration it has to be decided which machine should be scheduled
next and how it should be scheduled. Each of the remaining machines has to
be analyzed separately and for each of these machines a measure of criticality
has to be computed. The steps to be done within an iteration can be described
as follows.

In the disjunctive graph representation all disjunctive arcs belonging to the
machines still to be scheduled are deleted and all disjunctive arcs selected for
the machines already scheduled (set M) are kept in place. Given this directed
graph, the completion times of all n jobs can be computed easily. Let C}, denote
the completion time of job k. Now consider a machine ¢ that still has to be
scheduled (machine ¢ is an element of set M — My). To avoid an increase in
the completion time CY}, operation (7,7), j = 1,...,n, must be completed on
machine 7 by some local due date dfj If there are no paths from node (i, j) to
the sink corresponding to job k, i.e., Vj, then the local due date dfj is infinity. If
there are one or more paths from node (i, 7) to Vi, with the longest path being
of length £((7,7), V&), then the local due date is

décj - maX(C//i:’dk) - E((%]),Vk) +p7,j

If operation (7, j) is completed after its local due date dfj, ie., Cj > dfj, then the

tardiness of job k increases by at least C;; —dfj. Let T,i’;» denote max(C;; —dfj, )s
representing the tardiness of operation (7, j) with respect to the due date of job
k. Because operation (i,7) may cause a delay in the completion of any one of
the n jobs, one may assume that operation (i, j) is subject to n local due dates.
This implies that operation (i, j) is subject to a piece-wise linear cost function

hi; (see Figure 7.9), which is defined as
hij(Cij) = > wi T},
k=1

Thus a crude measure of criticality can be obtained for machine 7 by solving
a single machine problem with each operation subject to a piece-wise linear
cost function, i.e., 1 || > h;(C;), where h; is a piece-wise linear cost function
corresponding to job j. As in the previous section, the operations may be subject
to delayed precedence constraints to ensure feasibility.

This single machine subproblem is a generalization of the 1 || > w;T}; prob-
lem (see Chapter 3). A well-known heuristic for 1 || Y w,T} is the so-called
Apparent Tardiness Cost (ATC) rule. This ATC heuristic is a composite dis-
patching rule that combines the WSPT rule and the so-called Minimum Slack
first (MS) rule (under the MS rule the slack of job j at time ¢, max(d;—p;—t,0),
is computed and the job with the minimum slack is scheduled). Under the ATC
rule jobs are scheduled one at a time; that is, every time the machine becomes
free a ranking index is computed for each remaining job. The job with the high-
est ranking index is then selected to be processed next. This ranking index is



7.3 The Shifting Bottleneck Heuristic and the Total Weighted Tardiness 203

h

]

df d C

Fig. 7.9 Cost function h;; of operation (i, 7) in single machine
subproblem

a function of the time ¢ at which the machine became free as well as of the p;,
the w; and the d; of the remaining jobs. The index is defined as

w; max(d; —p; —t,0)
L) =" exp (- " ),

by
where K is a scaling parameter, that can be determined empirically, and p is
the average of the processing times of the remaining jobs. The ATC rule is
discussed in detail in Chapter 14.

The piece-wise linear and convex function h;; in the subproblem 1 ||
>~ hj(C;) may be regarded as a sum of linear penalty functions, for each of which
an ATC priority index can be computed. One can think of several composite
priority index functions for this more complicated cost function. A reasonably
effective one assigns to operation (4, j) the priority value

Lij(t) = 2": F exp ( - (@5 = b+ (= t))+),

= Dij Kp

where t is the earliest time at which machine ¢ can be used, K is a scaling
parameter and p is the integer part of the average length of the operations to
be processed on machine i. This composite dispatching rule yields a reasonably
good schedule for machine 3.

A measure for the criticality of machine ¢ can now be computed in a number
of ways. For example, consider the solutions of all the single machine subprob-
lems and set the measure for the criticality of a machine equal to the corre-
sponding value of the objective function. However, there are more involved and
more effective methods for measuring machine criticality. For example, by se-
lecting the disjunctive arcs implied by the schedule for machine i, one can easily
compute in the new disjunctive graph the new (overall) completion times of all
n jobs, say C}/. Clearly, C}/ > C}. The contribution of job k to the measure of
criticality of machine 7 is computed as follows. If C}, > dj,, then the contribution
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of job k to the measure of criticality of machine i is wy(C} — C},). However, if
C}. < dy, then the penalty due to an increase of the completion of job k is more
difficult to estimate. This penalty would then be a function of C}, C}/, and dy.
Several functions have been experimented with and appear to be promising.
One such function is

(dr — C)* )

wn(Cf = Cyexp (=

where K is a scaling parameter. Summing over all jobs, i.e.,

n e /A
> - ey (= ST,

provides a measure of criticality for machine i. This last expression plays a role
that is similar to the one of Lyx(7) in Step 2 of Algorithm 7.2.1. After the
criticality measures of all the machines in M — M, have been computed, the
machine with the highest measure is selected as the next one to be included in
set M().

However, this process does not yet complete an iteration. The original shifting
bottleneck approach, as described in Algorithm 7.2.1, suggests that rescheduling
all the machines in the original set My is advantageous. This rescheduling may
result in different and better schedules. After this step has been completed, the
entire process repeats itself and the next iteration is started.

Example 7.3.1 (Shifting Bottleneck and Total Weighted Tardiness)

Consider the instance with three machines and three jobs depicted in Fig-
ure 7.8.

job w; 7m; d; machine sequence processing times
1 1 5 24 1,2,3 P11 =5, pa1 = 10, p31 = 4
2 2 0 18 3,1,2 P32 =4, p12 =5, paz =6
3 .2 0 16 3,2,1 P33 =95, p23 =3, p13 = 7

The initial graph is depicted in Figure 7.10.a.

Iteration 1: The first iteration requires the optimization of three subprob-
lems, one for each machine in the job shop. The data for these three sub-
problems, corresponding to machines 1, 2, and 3, are tabulated below.

jobs 1 2 3
P1j 5 5 7
T1j 5 4 8
d}j,d%j,d‘fj 10, —, — —, 12, — -, —, 16
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jobs 1 2 3
ij 10 6 3
24 10 9 5
d, d3;,d3; 20,—,— —18,— —,—9
jobs 2 3
ng 20 0 0
d3;,d3;, d3;  24,—,— = 7,— —,—,6

7

The entry “—” indicates that the corresponding due date dfj is infinite, i.e.,

there is no path from operation (i,7) to the sink corresponding to job k.
The subproblems are solved using a dispatching rule that is based on the
priority index I;;(t) for operation (4, j), where ¢ is the earliest time at which
machine 7 can be used. Set the scaling parameter K equal to 0.1.

(c) Second iteration (b) Third iteration

Fig. 7.10 Directed graphs in Example 7.3.1
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Since no operation has been scheduled yet, the priority indexes for the
operations assigned to machine 1 are (assuming ¢t = 4 and p = 5) [;1(4) =
1.23 x 107, I12(4) = 3.3 x 1077 and I;3(4) = 1.46 x 10~'2. The operation
with the highest priority, i.e., operation (1, 1), is put in the first position and
the remaining indexes are recalculated in order to determine which operation
should be scheduled next. The solutions obtained for these three subproblems
are:

machine i sequence value

1 (1,1),(1,2),(1,3) 18
2 (2,3),(2,1),(2,2) 16
3 (3.3),(3,2),(3,1) 4

Since the solution of subproblem 1 has the highest value, schedule ma-
chine 1 by inserting the disjunctive arcs (1,1) — (1,2) and (1,2) — (1,3),
as shown in Figure 7.10.b.

Tteration 2: The data for the new subproblems, corresponding to machines 2
and 3, are tabulated below.

jobs 1 2 3
D2j 10 6 3
725 10 15 5
dyj,d3;,d3;  20,—,—  —21,—  —, —15
jobs 1 2 3
D3; 4 4 5
7"3j 20 0 0
d}),j,d%j,dgj 24, —, — —-,10,10 —,—,12

In this iteration operation (3,2) has two due dates because there is a (di-
rected) path from node (3,2) to V5 and V3. This makes its index equal to

I32(0) = 1.53 x 1077 4+ 1.53 x 1077 = 3.06 x 1077,
since t = 0 and p = 4. The solutions obtained for the two subproblems are:

machine i sequence value

2 (2,3),(2,1),(2,2) 10
3 (3,2),(3,3),(3,1) 0

The solution for subproblem 2 has the highest value (10). Schedule machine 2
by inserting the disjunctive arcs (2,3) — (2,1) and (2,1) — (2,2) as shown
in Figure 7.10.c.
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Machine 1 | 1,1 | 1,2 1,3 |
Machine 2 | 2,3 | | 2,1 | 2,2 |
Machine 3 3,3 | 3,2 | 3,1

\ l l l l l

0 5 10 15 20 25

Fig. 7.11 Final schedule in Example 7.3.1

Tteration 3: The only subproblem that remains is the one for machine 3.

jobs 1 2 3
p3j 4 4 5
73; 20 0 0
i, d3;,d3; 24—, —  —,15,10  7,7,12

Its optimal solution is (3,3),(3,2),(3,1) with value equal to zero, so insert
the arcs (3,3) — (3,2) and (3,2) — (3,1), as shown in Figure 7.10.d. The
final solution is depicted in Figure 7.11, with objective function equal to

3
D wiTy=1x (24 —24)" +2x (26— 18)" +2 x (22— 16)" = 28.
=1

It happens that in this case the heuristic does not yield an optimal solution.
The optimal solution with a value of 18 can be obtained with more elaborate
versions of this heuristic. These versions make use of backtracking techniques
as well as machine reoptimization (similar to Step 4 in Algorithm 7.2.1). ||

7.4 Constraint Programming and the Makespan

Constraint programming is a technique that originated in the Artificial In-
telligence (AI) community. In recent years, it has often been implemented in
combination with Operations Research (OR) techniques in order to improve its
effectiveness.

Constraint programming, according to its original design, only tries to find a
good solution that is feasible and that satisfies all the given constraints (which
may include different release dates and due dates of jobs). The solutions ob-
tained may not necessarily minimize the objective function. However, it is pos-
sible to embed a constraint programming technique in a framework that is
designed to minimize any due date related objective function.
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Constraint programming applied to Jm || Crpax works as follows. Suppose
that in a job shop a schedule has to be found with a makespan C,.x that is
less than or equal to a given deadline d. The constraint satisfaction algorithm
has to produce for each machine a sequence of operations such that the overall
schedule has a makespan less than or equal to d.

Before the actual procedure starts, an initialization step has to be done. For
each operation a computation is done to determine its earliest possible start-
ing time and latest possible completion time on the machine in question. After
all the time windows have been computed, the time windows of all the opera-
tions on each machine are compared to one another. When the time windows of
two operations on any given machine do not overlap, a precedence relationship
between the two operations can be imposed; in any feasible schedule the oper-
ation with the earlier time window must precede the operation with the later
time window. Actually, a precedence relationship may be inferred even when
the time windows do overlap. Let S;; (S;7) denote the earliest (latest) possible
starting time of operation (7, j) and C}; (C};) the earliest (latest) possible com-
pletion time of operation (7, j) under the current set of precedence constraints.
Note that the earliest possible starting time of operation (i, j), i.e., S};, may be
regarded as a local release date of the operation and may be denoted by r;;,
whereas the latest possible completion time, i.e., CZ{;-, may be considered a local
due date denoted by d;;. Define the slack between the processing of operations
(¢,7) and (¢, k) on machine ¢ as

(i) (ik) = Sir, — Cf;

or

i) =iy = Cil, = Sij = Pij — Pik
or

O(i,j)—(i,k) = dik = Tij — Pij — Pik-
If

O (i) —(ik) <0

then there does not exist, under the current set of precedence constraints, a
feasible schedule in which operation (i, j) precedes operation (i, k) on machine ;
so a precedence relationship can be imposed that requires operation (i, k) to
appear before operation (i,5). In the initialization step of the procedure all
pairs of time windows are compared to one another and all implied precedence
relationships are inserted in the disjunctive graph. Because of these additional
precedence constraints the time windows of each one of the operations can be
adjusted (narrowed) again, i.e., this involves a recomputation of the release date
and the due date of each operation.

Constraint satisfaction techniques in general rely on constraint propagation.
A constraint satisfaction technique typically attempts, in each step, to insert
new precedence constraints (disjunctive arcs) that are implied by the precedence
constraints inserted before and by the original constraints of the problem. With
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the new precedence constraints in place the technique recomputes the time
windows of all operations. For each pair of operations that have to be processed
on the same machine it has to be verified which one of the following four cases
applies.

Case 1:
If o)~k 20 and 0 k)5 <0,
then the precedence constraint (i,7) — (i, k) has to be imposed.

Case 2:
If 0 (i k)= (ig) = 0 and ()~ (ik) <0,
then the precedence constraint (i,k) — (i,7) has to be imposed.

Case 3:
If (i, j)—(i.k) <0 and o g5 <0,
then there is no schedule that satisfies the precedence constraints
already in place.

Case 4:
If 0(i )=k 2 0 and 0 ky— (5 = 0,
then either ordering between the two operations is still possible.

In one of the steps of the algorithm that is described in this section a pair of
operations has to be selected that satisfies Case 4, i.e., either ordering between
the operations is still possible. In this step of the algorithm many pairs of
operations may still satisfy Case 4. If there is more than one pair of operations
that satisfies Case 4, then a search control heuristic has to be applied. The
selection of a pair is based on the sequencing flexibility that this pair still
provides. The pair with the lowest flexibility is selected. The reasoning behind
this approach is straightforward. If a pair with low flexibility is not scheduled
early on in the process, then it may be the case that later on in the process this
pair cannot be scheduled at all. So it makes sense to give priority to those pairs
with a low flexibility and postpone pairs with a high flexibility. Clearly, the
flexibility depends on the amounts of slack under the two orderings. One simple
estimate of the sequencing flexibility of a pair of operations, ¢((i,7)(i,k)), is
the minimum of the two slacks, i.e.,

B((3,7) (@, k)) = min(o (i j)—s (i,k)s T(i,k) - (6,) )

However, relying on this minimum may lead to problems. For example, suppose
one pair of operations has slack values 3 and 100, whereas another pair has slack
values 4 and 4. In this case, there may be only limited possibilities for scheduling
the second pair and postponing a decision with regard to the second pair may
well eliminate them. A feasible ordering with regard to the first pair may not
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really be in jeopardy. Instead of using ¢((¢,5)(i,k)) the following measure of
sequencing flexibility has proven to be more effective:

¢/((i7j)(i7k)) = \/min(a(i,j)ﬁ(i,kﬁU(i,k)a(i,j)) X max(a(i,j)ﬂ(i,k%U(i,k)a(i,j))-

So if the max is large, then the flexibility of a pair of operations increases and
the urgency to order the pair goes down. After the pair of operations with the
lowest sequencing flexibility ¢'((4,7)(i,k)) has been selected, the precedence
constraint that retains the most flexibility is imposed, i.e., if

T(5,5) = (ik) = O(,k)—(i5)

operation (i, j) must precede operation (i, k).

In one of the steps of the algorithm it also can happen that a pair of opera-
tions satisfies Case 3. When this is the case the partial schedule that is under
construction cannot be completed and the algorithm has to backtrack. Back-
tracking typically implies that one or more of the ordering decisions made in
earlier iterations has to be annulled (i.e., precedence constraints that had been
imposed earlier have to be removed). Or, it may imply that there does not
exist a feasible solution for the problem in the way it has been presented and
formulated and that some of the original constraints of the problem have to be
relaxed.

The constraint guided heuristic search procedure can be summarized as fol-
lows.

Algorithm 7.4.1 (Constraint Guided Heuristic Search)
Step 1.
Compute for each unordered pair of operations
O(i,5) (k) AN O (i ) (i) -
Step 2.
Check dominance conditions and classify remaining ordering decisions.
If any ordering decision is either of Case 1 or Case 2 go to Step 3.
If any ordering decision is of Case 3, then backtrack;
otherwise go to Step 4.
Step 3.

Insert new precedence constraint and go to Step 1.

Step 4.
If no ordering decision is of Case 4, then solution is found. STOP.
Otherwise go to Step 5.

Step 5.

Compute ¢'((i,7)(i, k)) for each pair of operations not yet ordered.
Select the pair with the minimum ¢'((4,75)(3, k)).
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If 0 j)—(ik) = O(i,k)—(i5)» then operation (i, k) must follow operation (i, j);
otherwise operation (i,j) must follow operation (i,k).
Go to Step 3. I

In order to apply the constraint guided heuristic search procedure to Jm ||
Chax, it has to be embedded in the following framework. First, an upper bound
d,, and a lower bound d; have to be found for the makespan.

Algorithm 7.4.2 (Framework for Constraint Guided Heuristic Search)
Step 1.
Set d = (di + du)/2.
Apply Algorithm 7.4.1.
Step 2.
If Chhax < d, set d,, = d.
If Crnax > d, set d; = d.
Step 3.

If d, — d; > 1 return to Step 1.
Otherwise STOP. I

The following example illustrates the use of the constraint satisfaction tech-
nique.

Example 7.4.3 (Application of Constraint Programming to the Job
Shop)

Consider the instance of the job shop problem described in Example 7.1.1.

jobs machine sequence processing times
1 1,2,3 p11 =10, p21 =38, p31 =4
2 2317433 P22:87 P12:37 p42:57 pd2:6
3 1,2,4 P13 =4, p3=7, pi3=3

Consider a due date d = 32 by when all jobs have to be completed.
Consider again the disjunctive graph but disregard all disjunctive arcs (see
Figure 7.12). By doing all longest path computations, the local release dates
and local due dates for all operations can be established (see Table 7.1(a)).

Given these time windows for all the operations, it has to be verified
whether these constraints already imply any additional precedence con-
straints. Consider, for example, the pair of operations (2,2) and (2,3) which
both have to go on machine 2. Computing the slack yields

0(2,3)—(2,2) = d22 — T23 — P22 — D23
=18—4-8-7
= —17
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Fig. 7.12 Disjunctive graph without disjunctive arcs

(a) (b)
operations ri; d;j operations r;; di;
(1,1) 0 20 (1,1) 018
(2,1) 10 28 (2,1) 10 28
(3,1) 18 32 (3,1) 18 32
(2,2) 018 (2,2) 0 18
(1,2) 8 21 (1,2) 10 21
(4,2) 11 26 (4,2) 13 26
(3,2) 16 32 (3,2) 18 32
(1,3) 0 22 (1,3) 0 22
(2,3) 4 29 (2,3) 8 29
(4,3) 11 32 (4,3) 15 32

(c)
pair (i, 7)(i, k)
(1,1)(1,3) 4 x8=5.65
(1,2)(1,3) v/5x 14 =8.36
(2,1)(2,3) V4 x5 =447
(3,1)(3,2) V4 x4=4.00
(4,2)(4,3) V3 x 11 =5.74

Table 7.1 (a) Local release and due dates. (b) Local release and due dates after
update. (¢) Computing ¢'((,5)(4, k)).
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which implies that the ordering (2,3) — (2,2) is not feasible. So the dis-
junctive arc (2,2) — (2,3) has to be inserted. In the same way, it can be
shown that the disjunctive arcs (2,2) — (2,1) and (1,1) — (1,2) have to be
inserted as well.

These additional precedence constraints require an update of the release
dates and due dates of all operations. The adjusted release and due dates
are presented in Table 7.1(b).

These updated release and due dates do not imply any additional prece-
dence constraints. Going through Step 5 of the algorithm requires the com-
putation of the factor ¢'((4,7)(i,k)) for every unordered pair of operations
on each machine (see Table 7.1(c)).

The pair with the least flexibility is (3,1)(3,2). Since the slacks are such
that

0(3,2)=(3,1) = 0(3,1)—~(3,2) = 4,

either precedence constraint can be inserted. Suppose the precedence con-
straint (3,2) — (3,1) is inserted. This precedence constraint causes major
changes in the time windows during which the operations have to be pro-
cessed (see Table 7.2(a)).

However, this new set of time windows imposes an additional precedence
constraint, namely (4,2) — (4,3). This new precedence constraint causes
changes in the release dates and due dates of the operations shown in Ta-
ble 7.2(b).

These updated release and due dates do not imply additional precedence
constraints. Step 5 of the algorithm now computes for every unordered pair
of operations on each machine the factor ¢'((z,5)(4, k)) (see Table 7.2(c)).

The pair with the least flexibility is (1,1)(1,3) and the precedence con-
straint (1,1) — (1,3) has to be inserted.

Inserting this last precedence constraint enforces one more constraint,
namely (2,1) — (2,3). Now only one unordered pair of operations remains,
namely pair (1,3)(1,2). These two operations can be ordered in either way
without violating any due dates. A feasible ordering is (1,3) — (1,2). The
resulting schedule with a makespan of 32 is depicted in Figure 7.13. This
schedule meets the due date originally set but is not optimal.

When the pair (3,1)(3,2) had to be ordered the first time around, it could
have been ordered in either direction because the two slack values were equal.
Suppose at that point the opposite ordering was selected, i.e., (3,1) — (3,2).
Restarting the process at that point yields the release and due dates shown
in Table 7.3(a).

These release and due dates enforce a precedence constraint on the pair
of operations (2,1)(2,3) and the constraint is (2,1) — (2, 3). This additional
constraint changes the release dates and due dates (see Table 7.3(b)).

These new release dates and due dates have an effect on the pair (4, 2)(4, 3)
and the arc (4,2) — (4,3) has to be included. This additional arc does not
cause any additional changes in the release and due dates. At this point only
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(a) (b)
operations 5 di; operations r;; di;
(1,1) 0 14 (1,1) 0 14
(2,1) 10 28 (2,1) 10 28
(3,1) 24 32 (3,1) 24 32
(2,2) 0 14 (2,2) 0 14
(1,2) 10 17 (1,2) 10 17
(4,2) 13 22 (4,2) 13 22
(3,2) 18 28 (3,2) 18 28
(1,3) 0 22 (1,3) 0 22
(2,3) 8 29 (2,3) 8 29
(4,3) 15 32 (4,3) 18 32

()

pair ¢'((1,4)(i, k)
(1,1)(1,3) /0 x8=0.00
(1,2)(1,3) /5 x 10 =17.07
(2,1)(2,3) V4 x5=447

Table 7.2 (a) Local release and due dates. (b) Local release and due dates after
update. (¢) Computing ¢'((,5) (4, k)).

| 1,1 | 1,3 |L2|

b

| 2.2 | | 2.1 | 2.3 |

) e ——— —
—_—
~—

Fig. 7.13 Final schedule in Example 7.4.3
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(a) (b)

operations 5 d;j operations r;; di;
(1,1) 0 14 (1,1) 0 14
(2,1) 10 22 (2,1) 10 22
(3,1) 18 26 (3,1) 18 26
(2,2) 018 (2,2) 0 18
(1,2) 10 21 (1,2) 10 21
(4,2) 13 26 (4,2) 13 26
(3,2) 18 32 (3,2) 22 32
(1,3) 0 22 (1,3) 0 22
(2,3) 8 29 (2,3) 18 29
(4,3) 15 32 (4,3) 25 32

()
pair ¢'((4,4)(i, k))

(1,1)(1,3) /0 x 8 =0.00
(1,2)(1,3) /5 x 14 = 8.36

Table 7.3 (a) Local release and due dates. (b) Local release and due dates after
update. (¢) Computing ¢'((,5) (4, k)).

two pairs of operations remain unordered, namely the pair (1,1)(1,3) and
the pair (1,2)(1, 3) (see Table 7.3(c)).

So the pair (1,1)(1, 3) is more critical and has to be ordered (1,1) — (1, 3).
It turns out that the last pair to be ordered, (1,2)(1, 3), can be ordered either
way.

The resulting schedule turns out to be optimal and has a makespan of 28.

As stated before, constraint satisfaction is not only suitable for makespan
minimization. It can also be applied to problems with due date related objectives
and with each job having its own release date.

7.5 Discussion

The disjunctive graph formulation for Jm || Chpax extends to Jm | rere |
Chax- The set of disjunctive arcs for a machine may now not be a clique. If
two operations of the same job have to be performed on the same machine a
precedence relationship is given. These two operations are not connected by a
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pair of disjunctive arcs, since they are already connected by conjunctive arcs.
The branch-and-bound approach described in Section 7.1 still applies. However,
the bounding mechanism is now not based on the solution of a 1 | 7j | Lax
problem, but rather on the solution of a 1 | rj,prec | Lmax problem. The
precedence constraints are the routing constraints on the different operations
of the same job to be processed on the machine.

In the same way that a flow shop can be generalized into a flexible flow shop,
a job shop can be generalized into a flexible job shop. The fact that the flexible
flow shop allows for few structural results gives already an indication that it is
hard to obtain results for the flexible job shop. Even the proportionate cases,
i.e., p;; = p; for all 4, are hard to analyze.

The Shifting Bottleneck heuristic can be adapted in such a way that it can
be applied to more general models than Jm || Cpax. These more general models
include recirculation as well as multiple machines at every stage. One such vari-
ation of the Shifting Bottleneck heuristic is based on decomposition principles.
This variation is especially suitable for the scheduling of flexible job shops. The
following five phase approach can be applied to flexible job shops.

Phase 1: The shop is divided into a number of workcenters that have to be
scheduled. A workcenter may consist of a single machine or a bank of machines
in parallel.

Phase 2: The entire job shop is represented through a disjunctive graph.

Phase 3: A performance measure is computed in order to rank the workcen-
ters in order of criticality. The schedule of the most critical workcenter, among
the workcenters of which the sequences still have to be determined, is fixed.

Phase 4: The disjunctive graph representation is used to capture the interac-
tions between the workcenters already scheduled and those not yet scheduled.

Phase 5: Those workcenters that already have been sequenced are resched-
uled using the new information obtained in Phase 4. If all workcenters have
been scheduled, stop. Otherwise go to Phase 3.

The subproblem now becomes a nonpreemptive parallel machine scheduling
problem with the jobs subject to different release dates and the maximum late-
ness as objective. A significant amount of computational research has been done
on this parallel machine problem.

This chapter describes an application of constraint programming to minimize
the makespan in job shops. A fair amount of research and development has been
done in recent years with regard to constraint programming techniques. These
techniques have now also been used for minimizing the total weighted tardiness
in job shops.

This chapter has not shown the use of local search in job shop scheduling.
An enormous amount of work has been done on this front. Chapter 14 discusses
the applications of local search to job shops.
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It is clear from this chapter that there are a number of completely differ-
ent techniques for dealing with job shops, namely disjunctive programming,
shifting bottleneck, constraint programming and also local search techniques.
Future research on job shop scheduling may focus on the development of hybrid
techniques incorporating two or more of these techniques in a single framework
that can be adapted easily to any given job shop instance.

Exercises (Computational)

7.1. Consider the following heuristic for Jm || Cmax. Each time a machine is
freed, select the job (among the ones immediately available for processing on the
machine) with the largest total remaining processing (including the processing
on the machine freed). If at any point in time more than one machine is freed,
consider first the machine with the largest remaining workload. Apply this
heuristic to the instance in Example 7.1.1.

7.2. Consider the following instance of Jm || Ciax-

jobs machine sequence processing times
1 1,2,3 pi1=19, pn=8, pn=4
2 13274 P12 = 53 P22 = 63 P42 = 3
3 33172 P33 = ]-07 p13 = 47 P23 = 9

Give the disjunctive programming formulation of this instance.

7.3. Consider the following instance of the Jm || Ciax problem.

jobs machine sequence processing times
1 1327334 P11 = 93 b21 = 87 P31 = 47 P41 = 4
2 1327433 P12 = 53 P22 = 67 P42 = 37 P32 = 6
3 31,24 p33 =10, pi3 =4, p3 =9, ps3=2

Give the disjunctive programming formulation of this instance.

7.4. Apply the heuristic described in Exercise 7.1 to the to the instance in
Exercise 7.3.

7.5. Consider the instance in Exercise 7.2.

(a) Apply the Shifting Bottleneck heuristic to this instance (doing the com-
putation by hand).

(b) Compare your result with the result of the shifting bottleneck routine
in the LEKIN system.

7.6. Consider again the instance in Exercise 7.2.

(a) Apply the branch-and-bound algorithm to this instance of job shop
problem.
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(b) Compare your result with the result of the local search routine in the
LEKIN system.

7.7. Consider the following instance of the two machine flow shop with the
makespan as objective (i.e., an instance of F2 || Ciax, which is a special case
of J2 || Cinax)-

jobs 12345678910 11
p; 364342755 6 12
Py 455233664 7 2

(a) Apply the heuristic described in Exercise 7.1 to this two machine flow
shop.

(b) Apply the shifting bottleneck heuristic to this two machine flow shop.
(¢) Construct a schedule using Johnson’s rule (see Chapter 6).

(d) Compare the schedules found under (a), (b), and (c).

7.8. Consider the instance of the job shop with the total weighted tardiness
objective described in Example 7.3.1. Apply the Shifting Bottleneck heuristic
again, but now use as scaling parameter K = 5. Compare the resulting schedule
with the schedule obtained in Example 7.3.1.

7.9. Consider the following instance of Jm || >~ w;T}.

job w; r; d; machine sequence processing times
1 1 323 1,2,3 p11=4,p21=9,p31 =5
2 2 217 3,1,2 P32 =4, p12 =15, p22 =5
3 2 015 3,2,1 P33 =06, po3 =4, p13 =6

(a) Apply the Shifting Bottleneck heuristic for the total weighted tardiness.

(b) Compare your result with the result of the shifting bottleneck routine
in the LEKIN system.

(¢) Compare your result with the result of the local search routine in the
LEKIN system.

7.10. Consider the following instance of F2 || > w;Tj.

jobs 1 2 3 4 5
pe; 10 5 4 6 3
d; 12 32 21 14 28
w;, 3 2 4 3 2

Apply the shifting bottleneck heuristic to minimize the total weighted tardiness.
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Exercises (Theory)

7.11. Design a branching scheme for a branch-and-bound approach that is
based on the insertion of disjunctive arcs. The root node of the tree corresponds
to a disjunctive graph without any disjunctive arcs. Each node in the branching
tree corresponds to a particular selection of a subset of the disjunctive arcs.
That is, for any particular node in the tree a subset of the disjunctive arcs
has been fixed in certain directions, while the remaining set of disjunctive arcs
has not been fixed yet. From every node there are two arcs emanating to two
nodes at the next level. One of the two nodes at the next level corresponds to
an additional disjunctive arc being fixed in a given direction while the other
node corresponds to the reverse arc being selected. Develop an algorithm that
generates the nodes of such a branching tree and show that your algorithm
generates every possible schedule.

7.12. Determine an upper and a lower bound for the makespan in an m ma-
chine job shop when preemptions are not allowed. The processing time of job j
on machine ¢ is p;; (i.e., no restrictions on the processing times).

7.13. Show that when preemptions are allowed there always exists an optimal
schedule for the job shop that is non-delay.

7.14. Consider J2 | rere,pij = 1 | Cmax. Each job has to be processed a
number of times on each one of the two machines. A job always has to alternate
between the two machines, i.e., after a job has completed one operation on one
of the machines it has to go to the other machine for the next operation. The
processing time of each operation is 1. Determine the schedule that minimizes
the makespan and prove its optimality.

Comments and References

Job shop scheduling has received an enormous amount of attention in the re-
search literature as well as in books.

The algorithm for minimizing the makespan in a two machine job shop with-
out recirculation is due to Jackson (1956) and the disjunctive programming
formulation described in Section 7.1 is from Roy and Sussmann (1964).

Branch-and-bound techniques have often been applied in order to minimize
the makespan in job shops; see, for example, Lomnicki (1965), Brown and Lom-
nicki (1966), Barker and McMahon (1985), Carlier and Pinson (1989), Apple-
gate and Cook (1991), Hoitomt, Luh and Pattipati (1993), Brucker, Jurisch
and Sievers (1994) and Brucker, Jurisch and Kramer (1994). For an overview
of branch-and-bound techniques applied to the job shop problem, see Pinson
(1995). Some of the branching schemes of these branch-and-bound approaches
are based on the generation of active schedules (the concept of an active sched-
ule was first introduced by Giffler and Thompson (1960)), while other branching
schemes are based on the directions of the disjunctive arcs to be selected.
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The famous shifting bottleneck heuristic is due to Adams, Balas and Zawack
(1988). Their algorithm makes use of a single machine scheduling algorithm
developed by Carlier (1982). Earlier work on this particular single machine
subproblem was done by McMahon and Florian (1975). Nowicki and Zdrzalka
(1986), Dauzere-Péres and Lasserre (1993, 1994) and Balas, Lenstra and Vaza-
copoulos (1995) all developed more refined versions of the Carlier algorithm.
The monograph by Ovacik and Uzsoy (1997) presents an excellent treatise of
the application of decomposition methods and shifting bottleneck techniques to
large scale job shops with various objectives, e.g., the makespan and the maxi-
mum lateness. This monograph is based on a number of papers by the authors;
see, for example, Uzsoy (1993) for the application of decomposition methods to
flexible job shops.

Job shops with the total weighted tardiness as objective have been the fo-
cus of a number of studies. Vepsalainen and Morton (1987) developed heuristics
based on priority rules. Singer and Pinedo (1998) developed a branch-and-bound
approach and Pinedo and Singer (1999) developed the shifting bottleneck ap-
proach described in Section 7.3.

For some basic examples of constraint programming applications to job
shops, see the books by Baptiste, Le Pape, and Nuijten (2001) and Van Hen-
tenryck and Michel (2005). For an application of constraint programming for
minimizing the total weighted tardiness, see Van Hentenryck and Michel (2004).

In addition to the procedures discussed in this chapter, job shop problems
have also been tackled with local search procedures; see, for example, Matsuo,
Suh, and Sullivan (1988), Dell’Amico and Trubian (1991), Della Croce, Tadei
and Volta (1992), Storer, Wu and Vaccari (1992), Nowicki and Smutnicki (1996),
and Kreipl (2000). Examples of such local search procedures are presented in
Chapter 14.

For a broader view of the job shop scheduling problem, see Wein and Cheve-
lier (1992). For an interesting special case of the job shop, i.e., a flow shop with
reentry, see Graves, Meal, Stefek and Zeghmi (1983).
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This chapter deals with multi-operation models that are different from the job
shop models considered in the previous chapter. In a job shop each job has a
fixed route that is predetermined. In practice, it often occurs that the route of
the job is immaterial and up to the scheduler to decide. When the routes of the
jobs are open, the model is referred to as an open shop.

The first section covers nonpreemptive open shop models with the makespan
as objective. The second section deals with preemptive open shop models with
the makespan as objective. The third and fourth section focus on nonpreemp-
tive and preemptive models with the maximum lateness as objective. The fifth
section considers nonpreemptive models with the number of tardy jobs as ob-
jective.

8.1 The Makespan without Preemptions

Consider O2 || Ciax; that is, there are two machines and n jobs. Job j may be
processed first on machine 1 and then on machine 2 or vice versa; the decision-
maker may determine the routes. The makespan has to be minimized. It is clear
that

n

n
Cmax 2 max (Zplja Zij)a

=1  j=1

since the makespan cannot be less than the workload on either machine. One
would typically expect the makespan to be equal to the RHS of the inequality;
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Machine 1 | 1 | 4 | 2 | 3 |
Machine 2 | 2 | 1 | 3 4 |
(a)
Machine 1 | 1 | 4 | 2 | 3 |
Machine 2 | 2 | 1 | 3 4 |
(b)

Fig. 8.1 Idle periods in two machine open shops: (a) idle period causes
unnecessary increase in makespan (b) idle period does not cause an
unnecessary increase in makespan

only in very special cases one would expect the makespan to be larger than the
RHS. It is worthwhile to investigate the special cases where the makespan is
strictly greater than the maximum of the two workloads.

This section considers only non-delay schedules. That is, if there is a job
waiting for processing when a machine is free, then that machine is not allowed
to remain idle. It immediately follows that an idle period can occur on a machine
if and only if one job remains to be processed on that machine and, when that
machine is available, this last job is just then being processed on the other
machine. It can be shown that at most one such idle period can occur on at
most one of the two machines (see Figure 8.1). Such an idle period may cause
an unnecessary increase in the makespan; if this last job turns out to be the
very last job to complete all its processing, then the idle period does cause
an increase in the makespan (see Figure 8.1.a). If this last job, after having
completed its processing on the machine that was idle, is not the very last job
to leave the system, then the makespan is still equal to the maximum of the
two workloads (see Figure 8.1.b).

Consider the following rule: whenever a machine is freed, start processing
among the jobs that have not yet received processing on either machine the one
with the longest processing time on the other machine. This rule is in what
follows referred to as the Longest Alternate Processing Time first (LAPT) rule.
At time zero, when both machines are idle, it may occur that the same job
qualifies to be first on both machines. If that is the case, then it does not matter
on which machine this job is processed first. According to this LAPT rule,
whenever a machine is freed, jobs that already have completed their processing
on the other machine have the lowest, that is, zero, priority on the machine just
freed. There is therefore no distinction between the priorities of two jobs that
both already have been processed on the other machine.
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Theorem 8.1.1. The LAPT rule results in an optimal schedule for O2 ||
Chuax with makespan

n n
Crnax = max ( je{Hll,E.i.).{,n}(plj + p2j), ;pu,;paj )
Proof. Actually, a more general (and less restrictive) scheduling rule already
guarantees a minimum makespan. This more general rule may result in many
different schedules that are all optimal. This class of optimal schedules includes
the LAPT schedule. This general rule also assumes that unforced idleness is not
allowed.

Assume, without loss of generality, that the longest processing time among
the 2n processing times belongs to operation (1, k), that is,

pijSPllm i:1727 j:1,7n

The more general rule can be described as follows. If operation (1, k) is the
longest operation, then job k& must be started at time 0 on machine 2. After job
k has completed its processing on machine 2, its operation (1, k) has the lowest
possible priority with regard to processing on machine 1. Since its priority is
then at all times lower than the priority of any other operation available for
processing on machine 1, the processing of operation (1, k) will be postponed
as much as possible. It can only be processed on machine 1 if no other job is
available for processing on machine 1 (this can happen either if it is the last
operation to be done on machine 1 or if it is the second last operation and the
last operation is not available because it is just then being processed on machine
2). The 2(n — 1) operations of the remaining n — 1 jobs can be processed on the
two machines in any order; however, unforced idleness is not allowed.

That this rule results in a schedule with a minimum makespan can be shown
as follows. If the resulting schedule has no idle period on either machine, then,
of course, it is optimal. However, an idle period may occur either on machine 1
or on machine 2. So two cases have to be considered.

Case 1: Suppose an idle period occurs on machine 2. If this is the case, then
only one more operation needs processing on machine 2 but this operation still
has to complete its processing on machine 1. Assume this operation belongs to
job l. When job [ starts on machine 2, job k starts on machine 1 and p1x > po;.
So the makespan is determined by the completion of job k on machine 1 and
no idle period has occurred on machine 1. So the schedule is optimal.

Case 2: Suppose an idle period occurs on machine 1. An idle period on
machine 1 can occur only when machine 1 is freed after completing all its
operations with the exception of operation (1, %) and operation (2, k) of job k
is at that point still being processed on machine 2. In this case, the makespan
is equal to pax + p1x and the schedule is optimal. a
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Another rule that may seem appealing at first sight is the rule that gives,
whenever a machine is freed, the highest priority to the job with the largest
total remaining processing time on both machines. It turns out that there are
instances, even with two machines, when this rule results in a schedule that is
not optimal (see Exercise 8.12). The fact that the priority level of a job on one
machine depends only on the amount of processing remaining to be done on
the other machine is key.

The LAPT rule described above may be regarded as a special case of a more
general rule that can be applied to open shops with more than two machines.
This more general rule may be referred to as the Longest Total Remaining
Processing on Other Machines first rule. According to this rule, again, the pro-
cessing required on the machine currently available does not affect the priority
level of a job. However, this rule does not always result in an optimal schedule
since the Om || Cinax problem is NP-hard when m > 3.

Theorem 8.1.2.  The problem O3 || Cax is NP-hard.

Proof. The proof is based on a reduction of PARTITION to O3 || Cinax. The PAR-
TITION problem can be formulated as follows. Given positive integers ay, ..., a;

and
1
b = 9 Z aj7
Jj=1
do there exist 2 disjoint subsets S; and S such that

Zaj: Zaj:b?

JES1 JES2

The reduction is based on the following transformation. Consider 3t + 1 jobs.
Of these 3t + 1 jobs there are 3t jobs that have only one nonzero operation and
one job that has to be processed on each one of the three machines.

p1j = aj, P2 =p3j =0, for 1 <j<t,
p2j = aj, pij =p3; =0, fort+1<j<2t,
p3; = aj, p1j =p2; =0, for 2t +1 < j < 3t,

D1,3t4+1 = D2,3t+1 = P3,3t+1 = b,

where

t 2t 3t
Zaj = Z a; = Z a; = 2b
j=1

j=t+1 j=2t+1

and z = 3b. The open shop problem now has a schedule with a makespan
equal to z if and only if there exists a partition. It is clear that to have a
makespan equal to 3b job 3t + 1 has to be processed on the three machines
without interruption. Consider the machine on which job 3t 4+ 1 is processed
second, that is, during the interval (b,2b). Without loss of generality it may
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job3r+1
Machine 1 | |
job3r+1 ]
Machine 2 | |
iL job3r+1

Machine 3 | | |

\ \ \ \

0 b 2b 3 ot

Fig. 8.2 Reduction of PARTITION to O3 || Cmax

be assumed that this is machine 1. Jobs 1,...,¢ have to be processed only on
machine 1. If there exists a partition of these ¢ jobs in such a way that one set
can be processed during the interval (0,b) and the other set can be processed
during the interval (2b,3b), then the makespan is 3b (see Figure 8.2). If there
does not exist such a partition, then the makespan has to be larger than 3b. O

The LAPT rule for O2 || Cipax is one of the few polynomial time algorithms
for nonpreemptive open shop problems. Most of the more general open shop
models within the framework of Chapter 2 are NP-hard, for example, O2 | r; |
Crax. However, the problem Om | 7j,p;; = 1 | Cmax can be solved in polynomial
time. This problem is discussed in a more general setting in Section 8.3.

8.2 The Makespan with Preemptions

Preemptive open shop problems tend to be somewhat easier. In contrast to
Om || Ciax the Om | prmp | Cinax problem is solvable in polynomial time.
From the fact that the value of the makespan under LAPT is a lower bound
for the makespan with two machines even when preemptions are allowed, it
follows that the nonpreemptive LAPT rule is also optimal for O2 | prmp | Ciyax.
It is easy to establish a lower bound for the makespan with m (m > 3)
machines when preemptions are allowed:

m n
Crnax > max( jomax ;p”, z‘e{qfé.)fm}j;p” )

That is, the makespan is at least as large as the maximum workload on each
of the m machines and at least as large as the total amount of processing to
be done on each of the n jobs. It turns out that it is rather easy to obtain a
schedule with a makespan that is equal to this lower bound.

In order to see how the algorithm works, consider the m x n matrix P of
the processing times p;;. Row ¢ or column j is called tight if its sum is equal
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to the lower bound and slack otherwise. Suppose it is possible to find in this
matrix a subset of nonzero entries with exactly one entry in each tight row and
one entry in each tight column and at most one entry in each slack row and
slack column. Such a subset would be called a decrementing set. This subset is
used to construct a partial schedule of length A, for some appropriately chosen
A. In this partial schedule machine ¢ works on job j for an amount of time
that is equal to min(p;;, A) for each element p;; in the decrementing set. In
the original matrix P the entries corresponding to the decrementing set are
then reduced to max(0,p;; — A) and the resulting matrix is then called P’.
If A is chosen appropriately, the makespan C,,. that corresponds to the new
matrix P’ is equal to Cpax — A. This value for A has to be chosen carefully.
First, it is clear that the A has to be smaller than every p;; in the decrementing
set that is in a tight row or column, otherwise there will be a row or column in
P’ that is strictly larger than C! For the same reason, if p;; is an element in

max*

the decrementing set in a slack row, say row ¢, it is necessary that

A< pij + Cmax — Zpi/m
k

where Cax — D pik is the amount of slack time in row 4. Similarly, if p;; is an
entry in the slack column j, then

AL pij + Cmax — Zpkj7
k

where Crax — Y pr; is the amount of slack time in column j. If row ¢ or column
7 does not contain an element in the decrementing set, then

A < Chax — Zpij
J

or

A < Chax — Zpij~
[

If A is chosen to be as large as possible subject to these conditions, then either
P’ will contain at least one less strictly positive element than P or P’ will
contain at least one more tight row or column than P. It is then clear that
there cannot be more than r + m + n iterations where r is the number of
strictly positive elements in the original matrix.

It turns out that it is always possible to find a decrementing set for a nonneg-
ative matrix P. This property is the result of a basic theorem due to Birkhoff
and von Neumann regarding stochastic matrices and permutation matrices.
However, the proof of this theorem is beyond the scope of this book.
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Machine 1 | 2 | 1 | 4 |
Machine 2 | 1 | 3 | 3 |
Machine 3 | 4 | 4 | | 1 |

Fig. 8.3 Optimal Schedule for O3 | prmp | Cimax with four jobs
(Example 8.2.1)

Example 8.2.1 (Minimizing Makespan with Preemptions)

Consider 3 machines and 4 jobs with the processing times being the entries
in the matrix

3404
P=14060
4006

It is easily verified that Cyhax = 11 and that the first row and first column are
tight. A possible decrementing set comprises the processing times p1o = 4,
po1 = 4 and p3g = 6. If A is set equal to 4, then C/ .. = 7. A partial schedule
is constructed by scheduling job 2 on machine 1 for 4 time units; job 1 on
machine 2 for 4 time units and job 4 on machine 3 for 4 time units. The

matrix is now

3004
P'=]|0060
4002

Again, the first row and the first column are tight. A decrementing set is
obtained with the processing times pi; = 3, p2s = 6 and p34 = 2. Choosing
A = 3, the partial schedule can be augmented by assigning job 1 to machine
1 for 3 time units, job 3 to machine 2 for 3 time units and job 4 again to
machine 3 but now only for 2 time units. The matrix is

0004
P’"=1{0030
4000

The last decrementing set is obtained with the remaining three positive pro-
cessing times. The final schedule is obtained by augmenting the partial sched-
ule by assigning job 4 on machine 1 for 4 time units, job 3 to machine 2 for
3 time units and job 1 to machine 3 for 4 time units (see Figure 8.3). I
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8.3 The Maximum Lateness without Preemptions

The Om || Lmax problem is a generalization of the Om || Cpax problem and is
therefore at least as hard.

Theorem 8.3.1. The problem O2 || Lyax is strongly NP-Hard.

Proof. The proof is done by reducing 3-PARTITION to O2 || Luyax. The 3-
PARTITION problem is formulated as follows. Given positive integers aq, . . ., as;
and b, such that

b b

4 <a; < 9
and

3t

Z aj = tb,

j=1
do there exist ¢ pairwise disjoint three element subsets S; C {1,...,3t} such
that

Z a; = b

JES:

fori=1,...,t7
The following instance of O2 || Lyax can be constructed. The number of
jobs, n, is equal to 4¢ and

plj:O DP2; = aj dj:?)tb jZl,...,?)t
plj:3b p2j12b dJ:(3(j73t)71)b ]:3t+2,,4t

There exists a schedule with L. < 0 if and only if jobs 1,.. ., 3t can be divided

into ¢ groups, each containing 3 jobs and requiring b units of processing time
on machine 2, i.e., if and only if 3-PARTITION has a solution. g

It can be shown that O2 || Luyax is equivalent to O2 | rj | Ciax. Consider
the O2 || Liax problem with deadlines d; rather than due dates d;. Let

Jmax = maX(O?h ey dn)

Apply a time reversal to O2 || Lyax. Finding a feasible schedule with Lyax =0
is now equivalent to finding a schedule for O2 | 7 | Cimax with

ri = dmax - dj

and a makespan that is less than dmax. So the 02 | 7j | Cmax problem is
therefore also strongly NP-hard.

Consider now the special case Om | rj,p;j = 1 | Lmax. The fact that all
processing times are equal to 1 makes the problem considerably easier. The
polynomial time solution procedure consists of three phases, namely
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Fig. 8.4 Network flow problem of Phase 2

Phase 1: Parametrizing and a binary search.
Phase 2: Solving a network flow problem.

Phase 3: Coloring a bipartite graph.

The first phase of the procedure involves a parametrization. Let L be a free
parameter and assume that each job has a deadline d; 4 L. The objective is to
find a schedule in which each job is completed before or at its deadline, ensuring
that Lyax < L. Let

tmax = max(dy,...,dn) + L,

that is, no job should receive any processing after time t,,x.

The second phase focuses on the following network flow problem: There is a
source node U that has n arcs emanating to nodes 1,...,n. Node j corresponds
to job j. The arc from the source node U to node j has capacity m (equal to
the number of machines and to the number of operations of each job). There is
a second set of t,.x nodes, each node corresponding to one time unit. Node ¢,
t =1,...,tmax, corresponds to the time slot [t —1,¢]. Node j has arcs emanating
to nodes r; + 1,7; +2,...,d; + L. Each one of these arcs has unit capacity.
Each node of the set of ¢,,ax nodes has an arc with capacity m going to sink V'
(see Figure 8.4). The capacity limit on each one of these arcs is necessary to
ensure that no more than m operations are processed in any given time period.
The solution of this network flow problem indicates in which time slots the m
operations of job j are to be processed.
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However, the network flow solution cannot be translated immediately into
a feasible schedule for the open shop, because in the network flow formulation
no distinction is made between the different machines (i.e., in this solution it
may be possible that two different operations of the same job are processed in
two different time slots on the same machine). However, it turns out that the
assignment of operations to time slots prescribed by the network flow solution
can be transformed into a feasible schedule in such a way that each operation
of job j is processed on a different machine.

The third phase of the algorithm generates a feasible schedule. Consider
a graph coloring problem with a bipartite graph that consists of two sets of
nodes N7 and Ny and a set of undirected arcs. Set N7 has n nodes and set Ny
has tnax nodes. Each node in Nj is connected to m nodes in N3; a node in
Ny is connected to those m nodes in Ny that correspond to the time slots in
which its operations are supposed to be processed (according to the solution
of the network flow problem in the second phase). So each one of the nodes in
N is connected to exactly m nodes in N3, while each node in Ny is connected
to at most m nodes in Ni. A result in graph theory states that if each node
in a bipartite graph has at most m arcs, then the arcs can be colored with m
different colors in such a way that no node has two arcs of the same color. Each
color then corresponds to a given machine.

The coloring algorithm that achieves this can be described as follows. Let g;,
j=1,...,n denote the degree of a node from set N1, and let hy, t = 1,..., tmax
denote the degree of a node from set N,. Let

A=max(g1,...,Gn,h1,. .., s

max )

In order to describe the algorithm that yields a coloring with A colors, let
aj; = 1 if node j from N; is connected to node ¢ from N, and let a;; = 0
otherwise. The a;; are elements of a matrix with n rows and tmax columns.
Clearly,

n
ZajtSA t=1,... tmax
J=1

and

tmax

dap<A  j=1,....n
t=1

The entries (j,t) in the matrix with a;; = 1 are referred to as occupied cells.
Each occupied cell in the matrix has to be assigned one of the A colors in such
a way that in no row or column the same color is assigned twice.

The assignment of colors to occupied cells is done by visiting the occupied
cells of the matrix row by row from left to right. When visiting occupied cell
(j,t) a color ¢, not yet assigned in column ¢, is selected. If ¢ is assigned to
another cell in row j, say (j,t*), then there exists a color ¢ not yet assigned in
row j that can be used to replace the assignment of ¢ to (j,t*). If another cell
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Fig. 8.5 Network flow problem of Phase 2 (Example 8.3.2)

(5*,t*) in column j* already has assignment ¢/, then this assignment is replaced
by c¢. This conflict resolution process stops when there is no remaining conflict.
If the partial assignment before coloring (j,¢) was feasible, then the conflict
resolution procedure yields a feasible coloring in at most n steps.

Example 8.3.2 (Minimizing the Maximum Lateness without
Preemptions)

Consider the following instance of O3 | rj,p;j; = 1 | Lmax with 3 machines
and 7 jobs.

jobs 1234567
r; 0122345
di 5556688

Assume that L = 1. Each job has a deadline Jj =dj + 1. SO tmax = 9.
Phase 2 results in the network flow problem described in Figure 8.5. On the
left there are 7 nodes that correspond to the 7 jobs and on the right there
are 9 nodes that correspond to the 9 time units.

The result of the network flow problem is that the jobs are processed
during the time units given in the table below.

jobs 1 2 3 4 5 6 7
time units 1,23 2,3,4 4,5,6 45,6 56,7 7,89 7,89
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Fig. 8.6 Bipartite graph coloring in Phase 3 (Example 8.3.2)

It can be verified easily that at no point in time more than three jobs are
processed simultaneously.

Phase 3 leads to the graph coloring problem. The graph is depicted in
Figure 8.6 and the matrix with the appropriate coloring is

111000000
011100000
000111000
000111000
000011100
000000111
000000111

It is easy to find a red (r), blue (b) and white (w) coloring that corresponds
to a feasible schedule.

Since there is a feasible schedule for L = 1, it has to be verified at this
point whether or not there is a feasible schedule for L = 0. It can be shown
easily that there does not exist a schedule in which every job is completed
on time. I
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8.4 The Maximum Lateness with Preemptions

In scheduling it is often the case that the preemptive version of a problem is
easier than its nonpreemptive counterpart. That is also the case with Om |
prmp | Lyax and Om H Lnax-

Consider O2 | prmp | Lmax and assume that dy < --- < d,,. Let

k
Ay = Zplj
=1
and
k
By =) pay.
=1

The procedure to minimize the maximum lateness first considers the due
dates as absolute deadlines and then tries to generate a feasible solution. The
jobs are scheduled in increasing order of their deadlines, i.e., first job 1, then
job 2, and so on. Suppose that jobs 1,...,j— 1 have been scheduled successfully
and that job j has to be scheduled next. Let x; (y;) denote the total amount
of time prior to d; that machine 1 (2) is idle while machine 2 (1) is busy. Let
z; denote the total amount of time prior to d; that machines 1 and 2 are idle
simultaneously. Note that z;, y;, and z; are not independent, since

£L’j + Zj = dj — Aj,1
and
Yj +Zj = dj — ijl-

The minimum amount of processing that must be done on operation (1, j) while
both machines are available is max(0,p1; — ;) and the minimum amount of
processing on operation (2, j) while both machines are available is max(0, pa; —
y;). It follows that job j can be scheduled successfully if and only if

max (0, p1; — ;) + max(0, pa; — y;) < 2;
This inequality is equivalent to the following three inequalities:

Py — T <
P2 —Yj < %
P1j — Zj + P2 —Yj =

Zj

Zj

So job j can be scheduled successfully if and only if each one of the following
three feasibility conditions holds:
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Aj <d;
By <d;
Aj+Bj S 2dj —Zj

These inequalities indicate that in order to obtain a feasible schedule an attempt
has to be made in each iteration to minimize the value of z;. The smallest

possible values of z1,..., 2z, are defined recursively by
zZ1 = d1
zj=d; —dj_1+ H’léLX(O7 Zj—1 — P1,j—1 — pg,j_l), j=2,...,n.
In order to verify the existence of a feasible schedule, the values of z1,..., 2,

have to be computed recursively and for each z; it has to be checked whether
it satisfies the third one of the feasibility conditions. There exists a feasible
schedule if all the z; satisfy the conditions.

In order to minimize L,.x a parametrized version of the preceding compu-
tation has to be done. Replace each d; by d; + L, where L is a free parameter.
The smallest value of L for which there exists a feasible schedule is equal to the
minimum value of L.y that can be achieved with the original due dates d;.

It turns out that there exists also a polynomial time algorithm for the more
general open shop with m machines, even when the jobs have different release
dates, that is, Om | rj,prmp | Lmax. Again, as in the case with 2 machines,
the due dates d; are considered deadlines Jj, and an attempt is made to find a
feasible schedule where each job is completed before or at its due date. Let

ap <az <--- < apt1

denote the ordered collection of all distinct release dates r; and deadlines cij.
So there are p intervals [ay, ax+1]. Let I, denote the length of interval k, that
is,

Iy = apy1 — ag.
Let the decision variable z;;, denote the amount of time that operation (i, j)
is processed during interval k. Consider the following linear program:

P m n

max Z Z Z Tijk

k=1i=1 j=1

subject to
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m
injkﬁfk forall1<j<mn, 1<k<p
i=1
n
Zwijkﬁ-’k forall1<i<m, 1<k<p
J=1
p
Z%jkﬁpij forall1<j<mn, 1<i<m
k=1
Tijk 2 0 if r; <ap and d; > apqq
xijkzo ifrjzakH or djgak

The first inequality requires that no job is scheduled for more than I units of
time in interval k. The second inequality requires that the amount of processing
assigned to any machine is not more than the length of the interval. The third
inequality requires that each job is not processed longer than necessary. The
constraints on x;;; ensure that no job is assigned to a machine either before its
release date or after its due date. An initial feasible solution for this problem
is clearly x;;, = 0. However, since the objective is to maximize the sum of the
Zijk, the third inequality is tight under the optimal solution assuming there
exists a feasible solution for the scheduling problem.

If there exists a feasible solution for the linear program, then there exists a
schedule with all jobs completed on time. However, the solution of the linear
program only gives the optimal values for the decision variables x;;1. It does not
specify how the operations should be scheduled within the interval [ag, ak11].
This scheduling problem within each interval can be solved as follows: consider
interval k£ as an independent open shop problem with the processing time of
operation (4, j) being the value z;j; that came out of the linear program. The
objective for the open shop scheduling problem for interval k is equivalent to
the minimization of the makespan, i.e., Om | prmp | Cpax. The polynomial
algorithm described in the previous section can then be applied to each interval
separately.

If the outcome of the linear program indicates that no feasible solution exists,
then (similar to the m = 2 case) a parametrized version of the entire procedure
has to be carried out. Replace each Jj by Jj + L, where L is a free parameter.
The smallest value of L for which there exists a feasible schedule is equal to the
minimum value of L.y that can be achieved with the original due dates d;.

Example 8.4.1 (Minimizing Maximum Lateness with Preemptions)

Consider the following instance of O3 | rj, prmp | Lmax with 3 machines and
5 jobs.
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jobs 1 2 345
P1j 12223
D2j 31221
Py 21121
rj 11333
di 97679

There are 4 intervals that are determined by a; =1, a2 =3, a3 =6, a4 =7,
as = 9. The lengths of the four intervals are I} = 2, Is = 3, Is = 1, and
I, = 2. There are 4 x 3 x 5 = 60 decision variables x;;y.

The first set of constraints of the linear program has 20 constraints. The
first one of this set, i.e., j =1,k =1, is

T111 + T211 + 311 = 2.

The second set of constraints has 12 constraints. The first one of this set,
ie,i=1k=1,is

111 + T121 + T131 + T141 + T151 = 2.

The third set of constraints has 15 constraints. The first one of this set, i.e.,
i=1,5=1,is
Z111 + T112 + T113 + T114 + 2115 = 1.

It turns out that this linear program has no feasible solution. Replacing
d; by d; 4+ 1 yields another linear program that also does not have a feasible
solution. Replacing the original d; by d; 42 results in the following data set:

O = =N N
co w NN W
NelNdv) NN N
— W = o= W Ot

There are 4 intervals that are determined by a1y = 1, as = 3, ag = 8§,
as = 9, a5 = 11. The lengths of the four intervals are Iy = 2, Iy = 5,
I3 =1, and Iy = 2. The resulting linear program has feasible solutions and
the optimal solution is the following:
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T111 =

T121

T131 =

T141

T151 =

T112 =

T122

T132 =

T142

T152 =

T113 =

T123
T133
T143

T153 =

T114 =

T124

T134 =

T144

T154 =

2211 =0
To21 =1
231 =0
2241 =0
T251 = 0
2212 =0
T222 =0
T232 = 2
Togo = 2
Tose =1
T213 =1
T23 =0
T233 =0
T243 =0
T253 =0
To14 = 2
Z224 =0
T34 =0
To44 =0
Ta54 = 0

r311 =1
2321 = 0
331 =0
2341 =0
x351 =0
r312 =1
2322 = 0
T332 =1
T340 = 2
T35 = 1
313 =0
T323 = 1
x333 =0
x343 =0
x353 =0
314 = 0
2324 =0
334 =0
344 =0
T354 =0

237

Each one of the four intervals has to be analyzed now as a separate O3 |
prmp | Cpax problem. Counsider, for example, the second interval [ 3,8 ], i.e.,
xij2. The O3 | prmp | Cmax problem for this interval contains the following

data.

jobs
D1y

D2j
D3j

Applying the algorithm described in Section 8.2 results in the schedule
presented in Figure 8.7 (which turns out to be nonpreemptive). The schedules

in the other three intervals can be determined very easily.

8.5 The Number of Tardy Jobs

The Om | p;; = 1| Y U; problem is strongly related to the problems discussed
in the previous sections. In this problem again each job consists of m operations
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3 4 5 6 7 8

Fig. 8.7 Schedule for interval [3, 8] in Example 8.4.1

and each operation requires one time unit. Assume, without loss of generality,
that d1 Sdg S Sdn.

It can be shown easily that the set of jobs that are completed on time in an
optimal schedule belong to a set k*,k* 4+ 1,...,n. So the search for an optimal
schedule has two aspects. First, it has to be determined what the optimal value
of k* is, and second, given k*, a schedule has to be constructed in which each
job of this set finishes on time.

The value of k* can be determined via binary search. Given a specific set
of jobs that have to be completed on time, a schedule can be generated as
follows: Consider the problem Om | rj,p;j = 1 | Ciax, which is a special case
of the Om | rj,pij = 1| Lmax problem that is solvable by the polynomial time
algorithm described in Section 8.3. Set 7; in this corresponding problem equal to
dmax—d; in the original problem. In essence, the Om | 7, p;j = 1 | Cimax problem
is a time reversed version of the original Om | p;; = 1| >~ U; problem. If for the
makespan minimization problem a schedule can be found with a makespan less
than dmax, then the reverse schedule is applicable to the Om | p;; = 1| Y U;
problem with all jobs completing their processing on time.

8.6 Discussion

This chapter, as several other chapters in this book, focuses mainly on models
that are polynomial time solvable. Most open shop models tend to be NP-hard.

For example, very little can be said about the total completion time objective.
The Om || 3 C; problem is strongly NP-hard when m > 2. The Om | prmp |
>~ C; problem is known to be strongly NP-hard when m > 3. When m = 2 the
Om | prmp | 3 C; problem is NP-hard in the ordinary sense.

In the same way that a flow shop can be generalized to a flexible flow shop, an
open shop can be generalized to a flexible open shop. The fact that the flexible
flow shop allows for few structural results gives already an indication that it
may be hard to obtain results for the flexible open shop. Even the proportionate
cases, i.e., p;j = p; for all ¢ or p;; = p; for all j, are hard to analyze.
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Another class of models that are closely related to open shops have received
recently a considerable amount of attention in the literature. This class of mod-
els are typically referred to as concurrent open shops or open shops with job
overlap. In these open shops the processing times of any given job on the dif-
ferent machines are allowed to overlap in time (in contrast to the conventional
open shops where they are not allowed to overlap). This class of models are at
times also referred to as the class of order scheduling models. The motivation is
based on the following: Consider a facility with m different machines in parallel
and each machine being able to produce a specific type of product. A customer
places an order requesting a certain quantity of each product type. After all the
items for a given customer have been produced, the entire order can be shipped
to the customer.

Exercises (Computational)

8.1. Consider the following instance of O2 || Cyyax and determine the number
of optimal schedules that are non-delay.
jobs 1 2 3 4

Pi1j 9 7 513
paj 5 10 11 7

8.2. Counsider the following instance of O5 || Cinax with 6 jobs and all processing
times either 0 or 1. Find an optimal schedule.

jobs 123456
DP1j 100111
P35 010111

8.3. Consider the proportionate open shop O4 | p;; = pj | Cmax with 6 jobs.
Compute the makespan under the optimal schedule.

jobs 123456
p; 3566809
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8.4. Consider the problem O4 || Cyax and consider the Longest Total Remain-
ing Processing on Other Machines (LTRPOM) rule. Every time a machine is
freed the job with the longest total remaining processing time on all other ma-
chines, among available jobs, is selected for processing. Unforced idleness is not

8 Open Shops (Deterministic)

allowed. Consider the following processing times.

8.5. Find an optimal schedule for the instance of O4 | prmp | Cinax with 4 jobs

(a) Apply the LTRPOM

(b) Apply the LTRPOM

rule. Consider at time 0 first machine 1, then
machine 2, followed by machines 3 and 4. Compute the makespan.
rule. Consider at time 0 first machine 4, then
machine 3, followed by machines 2 and 1. Compute the makespan.

(¢) Find the optimal schedule and the minimum makespan.

and with the same processing times as in Exercise 8.4.

8.6. Consider the following instance of O4 | 7, p;j = 1 | Limax with 4 machines

and 7 jobs.

(a) Find the optimal schedule and the minimum L.

(b) Compare your result with the result in Example 8.3.2.

8.7. Solve the following instance of the O2 | prmp | Lmax problem.

8.8. Solve the following instance of the proportionate O2 | prmp | Lyax prob-

jobs

P1j
D2j
d;

lem.

W N
AN W
— s OU
=W W Ot
N AN O
Tt w 3

1
7
3
)

e}
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jobs 123 4 5 6 7
pm; 732 5 3 2 3
po; 732 5 3 2 3
d; 566 11 14 17 20

Can the algorithm described in Section 8.4 be simplified when the processing
times are proportionate?

8.9. Consider the Linear Programming formulation of the instance in Exer-
cise 8.7. Write out the objective function. How many constraints are there?

8.10. Consider the following instance of Om | p;; = 1| >~ U; with 3 machines
and 8 jobs.

jobs 12345678
dj 33444455

Find the optimal schedule and the maximum number of jobs completed on time.

Exercises (Theory)

8.11. Show that non-delay schedules for Om || Cinax have at most m — 1 idle
times on one machine. Show also that if there are m — 1 idle times on one
machine there can be at most m — 2 idle times on any other machine.

8.12. Consider the following rule for O2 || Cipax. Whenever a machine is freed,
start processing the job with the largest sum of remaining processing times on
the two machines. Show, through a counterexample, that this rule does not
necessarily minimize the makespan.

8.13. Give an example of Om || Cinax where the optimal schedule is not non-
delay.

8.14. Consider O2 || >~ C;. Show that the rule which always gives priority to
the job with the smallest total remaining processing is not necessarily optimal.

8.15. Consider O2 | prmp | > C;. Show that the rule which always gives
preemptive priority to the job with the smallest total remaining processing
time is not necessarily optimal.

8.16. Consider Om || Cpax. The processing time of job j on machine i is
either 0 or 1. Consider the following rule: At each point in time select, from
the machines that have not been assigned a job yet, the machine that still has
the largest number of jobs to do. Assign to that machine the job that still has
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to undergo processing on the largest number of machines (ties may be broken
arbitrarily). Show through a counterexample that this rule does not necessarily
minimize the makespan.

8.17. Consider a flexible open shop with two workcenters. Workcenter 1 con-
sists of a single machine and workcenter 2 consists of two identical machines.
Determine whether or not LAPT minimizes the makespan.

8.18. Consider the proportionate open shop Om | p;; = p; | Cmax. Find the
optimal schedule and prove its optimality.

8.19. Consider the proportionate open shop Om | prmp, p;; = p; | > C;. Find
the optimal schedule and prove its optimality.

8.20. Consider the following two machine hybrid of an open shop and a job
shop. Job j has processing time p;; on machine 1 and p; on machine 2. Some
jobs have to be processed first on machine 1 and then on machine 2. Other jobs
have to be processed first on machine 2 and then on machine 1. The routing
of the remaining jobs may be determined by the scheduler. Describe a schedule
that minimizes the makespan.

8.21. Find an upper and a lower bound for the makespan in an m machine
open shop when preemptions are not allowed. The processing time of job j on
machine ¢ is p;; (i.e., no restrictions on the processing times).

8.22. Compare Om | p; = 1| v with Pm | p; = 1, chains | 7 in which there
are n chains consisting of m jobs each. Let Z; denote the value of the objective
function in the open shop problem and let Z5 denote the value of the objective
function in the parallel machine problem. Find conditions under which Z; = Z5
and give examples where Z; > Zs.

Comments and References

The LAPT rule for O2 || Cimax appears to be new. Different algorithms have been
introduced before for 02 || Cimax, see for example, Gonzalez and Sahni (1976).
Gonzalez and Sahni (1976) provide an NP-hardness proof for O3 || Cmax and
Sevastianov and Woeginger (1998) present a Polynomial Time Approximation
Scheme (PTAS) for Om || Cmax-

The polynomial time algorithm for Om | prmp | Cmax is from Lawler and
Labetoulle (1978). This algorithm is based on a property of stochastic matrices
that is due to Birkhoff and Von Neumann; for an organized proof of this prop-
erty, see Marshall and Olkin (1979), Chapter 2, Theorems 2.A.2 and 2.C.1. For
more work on Om | prmp | Cimax, see Gonzalez (1979).

Lawler, Lenstra and Rinnooy Kan (1981) provide a polynomial time algo-
rithm for O2 | prmp | Lmax and show that O2 || Lmax is NP-Hard in the strong
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sense. Cho and Sahni (1981) analyze preemptive open shops with more than two
machines and present the linear programming formulation for Om | prmp | Limax.

For results on the minimization of the (weighted) number of late jobs in
open shops with unit processing times, see Brucker, Jurisch and Jurisch (1993),
Galambos and Woeginger (1995) and Kravchenko (2000).

Achugbue and Chin (1982) present an NP-hardness proof for 02 || 3 C;
and Liu and Bulfin (1985) provide an NP-hardness proof for O3 | prmp | 3 C;.
Tautenhahn and Woeginger (1997) analyze the total completion time when all
the jobs have unit processing times.

Vairaktarakis and Sahni (1995) obtain results for flexible open shop models.

Concurrent open shops and order scheduling models have received a consid-
erable amount of attention recently, see Wagneur and Sriskandarajah (1993),
Sung and Yoon (1998), Ng, Cheng and Yuan (2003), Leung, Li, Pinedo and
Sriskandarajah (2005), Yang and Posner (2005), Leung, Li and Pinedo (2005a,
2005b, 2006), and Roemer (2006).
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Production environments in the real world are subject to many sources of un-
certainty or randomness. Sources of uncertainty that may have a major impact
include machine breakdowns and unexpected releases of high priority jobs. An-
other source of uncertainty lies in the processing times, which are often not
precisely known in advance. A good model for a scheduling problem should
address these forms of uncertainty.

There are several ways in which such forms of randomness can be modeled.
For example, one could model the possibility of machine breakdowns as an inte-
gral part of the processing times. This can be done by modifying the distribution
of the processing times to take into account the possibility of breakdowns. Al-
ternatively, one may model breakdowns as a separate stochastic process, that
determines when a machine is available and when it is not.

The first section of this chapter describes the framework and notation. The
second section deals with distributions and classes of distributions. The third
section goes over various forms of stochastic dominance. The fourth section dis-
cusses the effect of randomness on the expected value of the objective function
given a fixed schedule. The fifth section describes several classes of scheduling
policies.

9.1 Framework and Notation

In what follows, it is assumed that the distributions of the processing times, the
release dates and the due dates are all known in advance, that is, at time zero.
The actual outcome or realization of a random processing time only becomes

M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 247
DOI 10.1007/978-1-4614-2361-4 9, © Springer Science+Business Media, LLC 2012
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known upon the completion of the processing; the realization of a release date
or due date becomes known only at that point in time when it actually occurs.

In this part of the book the following notation is used. Random variables
are capitalized, while the actual realized values are in lower case. Job j has the
following quantities of interest associated with it.

X;; = the random processing time of job j on machine ¢; if job j is only
to be processed on one machine, or if it has the same processing
times on each one of the machines it may visit, the subscript 7 is
omitted.

1/A;; = the mean or expected value of the random variable X;;.

R; = the random release date of job j.
D; = the random due date of job j.

w; = the weight (or importance factor) of job j.

This notation is not completely analogous to the notation used for the deter-
ministic scheduling models. The reason why X;; is used as the processing time
in stochastic scheduling is because of the fact that P usually refers to a prob-
ability. The weight w;, similar to that in the deterministic models, is basically
equivalent to the cost of keeping job j in the system for one unit of time. In the
queueing theory literature, which is closely related to stochastic scheduling, c;
is often used for the weight or cost of job j. The c; and the w; are equivalent.

9.2 Distributions and Classes of Distributions

Distributions and density functions may take many forms. In what follows, for
obvious reasons, only distributions of nonnegative random variables are consid-
ered. A density function may be continuous over given intervals and may have
mass concentrated at given discrete points. This implies that the distribution
function may not be differentiable everywhere (see Figure 9.1). In what follows
a distinction is made between continuous time distributions and discrete time
distributions.

A random variable from a continuous time distribution may assume any real
nonnegative value within one or more intervals. The distribution function of a
continuous time distribution is usually denoted by F'(t) and its density function

by f(t), i.e., t
FO =P <t)= [ f@d

where IF (s
s =

provided the derivative exists. Furthermore,
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Fig. 9.1 Example of a density function and a distribution function

F(t)=1-F(t) = P(X > t).

An important example of a continuous time distribution is the exponential
distribution. The density function of an exponentially distributed random vari-
able X is

ft) =A™,

and the corresponding distribution function is
Ft)y=1—e™,

which is equal to the probability that X is smaller than ¢ (see Figure 9.2). The
mean or expected value of X is

o0 o0 1
mmz/’ﬁ@mz/ LAP(t) = L.
0 0 A
The parameter A is referred the rate of the exponential distribution.

A random variable from a discrete time distribution may assume only val-
ues on the nonnegative integers, i.e., P(X = t) > 0 for ¢t = 0,1,2,... and
P(X =t) =0 otherwise. An important discrete time distribution is the deter-
ministic distribution. A deterministic random variable assumes a given value
with probability one.
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Fig. 9.2 The exponential distribution

Another important example of a discrete time distribution is the geomet-
ric distribution. The probability that a geometrically distributed random vari-
able X assumes the value t, t =0,1,2,..., is

P(X =) = (1- )q".

Its distribution function is

t oo
PX<t)=> (1-q)¢*=1- > (1—q)¢°=1-¢""
s=0 s=t+1
and its mean is
Bx)=_"1 .
1—g¢

The completion rate c(t) of a continuous time random variable X with density
function f(t) and distribution function F(t) is defined as follows:

_f®
“W=1 " pu

This completion rate is equivalent to the failure rate or hazard rate in relia-
bility theory. For an exponentially distributed random variable ¢(t) = A for
all t. That the completion rate is independent of t is one of the reasons why
the exponential distribution plays an important role in stochastic scheduling.
This property is closely related to the so-called memoryless property of the
exponential distribution, which implies that the distribution of the remaining
processing time of a job that already has received processing for an amount of
time ¢, is exponentially distributed with rate A and therefore identical to its
processing time distribution at the very start of its processing.
The completion rate of a discrete time random variable is defined as
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t)’
The discrete time completion rate of the geometric distribution is

PX>H= ¢ =1-gq, t=0,1,2,...,
which is a constant independent of ¢. This implies that the probability a job is
completed at ¢, given it has not been completed before ¢, is 1—¢. So the geometric
distribution has the memoryless property as well. The geometric distribution
is, in effect, the discrete time counterpart of the exponential distribution.

Distributions, either discrete time or continuous time, can be classified based
on the completion rate. An Increasing Completion Rate (ICR) distribution is
defined as a distribution whose completion rate c¢(t) is increasing in ¢, while
a Decreasing Completion Rate (DCR) distribution is defined as a distribution
whose completion rate is decreasing in t.

A subclass of the class of continuous time ICR distributions is the class of
Erlang(k,A) distributions. The Erlang(k, A) distribution is defined as

k—1
F(t)=1-

()\t)’r‘ef)\t
= 7!

The Erlang(k, A) is a k-fold convolution of the same exponential distribution
with rate A\. The mean of the Erlang(k, A) distribution is therefore k/A. If k
equals one, then the distribution is the exponential. If both k and A\ go to oo
while k/X = 1, then the Erlang(k, \) approaches the deterministic distribution
with mean 1. The exponential as well as the deterministic distribution are ICR
distributions.

A subclass of the class of continuous time DCR distributions is the class
of miztures of erxponentials. A random variable X is distributed according to
a mixture of exponentials if it is exponentially distributed with rate A; with
probability p;, j =1,...,n, and

The exponential distribution is DCR as well as ICR. The class of DCR distribu-
tions contains other special distributions. For example, let X with probability p
be exponentially distributed with mean 1/p and with probability 1 — p be zero.
The mean and variance of this distribution are E(X) = 1 and Var(X) = 2/p—1.
When p is very close to zero this distribution is in what follows referred to as
an Extreme Mixture of Exponentials (EME) distribution. Of course, similar dis-
tributions can be constructed for the discrete time case as well.
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Fig. 9.3 Classes of distributions

One way of measuring the variability of a distribution is through its coef-
ficient of variation C,(X), which is defined as the square root of the variance
(i.e., the standard deviation) divided by the mean, i.e.,

ey — VVarX) | VE(E) — (B(x))?

T B(X) E(X) '

It can be verified easily that the C,(X) of the deterministic distribution is
zero and the C,(X) of the exponential distribution is 1 (see Figure 9.3). The
Cy(X) of an extreme mixture of exponentials may be arbitrarily large (it goes
to oo when p goes to 0). One may expect the C,(X) of the geometric to be 1,
since the geometric is a discrete time counterpart of the exponential distribu-
tion. However, the C,(X) of the geometric, as it is defined above, is 1/,/q (see
Exercise 9.16).

9.3 Stochastic Dominance

It occurs often in stochastic scheduling that two random variables have to be
compared to one another. There are many ways in which one can compare ran-
dom variables to one another. Comparisons are based on properties referred to
as stochastic dominance, i.e., a random variable dominates another with respect
to some stochastic property. All forms of stochastic dominance presented in this
section apply to continuous random variables as well as to discrete random vari-
ables. The discrete time and continuous time definitions are only in a few cases
presented separately. Most forms of stochastic dominance can also be applied
in comparisons between a continuous random variable and a discrete random
variable.
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Definition 9.3.1 (Stochastic Dominance Based on Expectation).

(i) The random variable Xy is said to be larger in expectation than the ran-
dom wvariable X if E(X1) > E(X3).

(i) The random variable X1 is said to be stochastically larger than the ran-

dom wvariable Xo if
P(X1 > t) > P(XQ > t)

" 1— Fi(t) > 1— Fy(t)

for allt. This ordering is usually referred to as stochastic ordering and is denoted
by X1 >4 Xo.

(iii) The continuous time random wvariable X1 is larger than the contin-
uous time random variable Xo in the likelihood ratio sense if f1(t)/f2(t) is
nondecreasing in t, t > 0. The discrete time random variable X, is larger
than the discrete time random wvariable X5 in the likelihood ratio sense if
P(X, = t)/P(X2 = t) is nondecreasing in t, t = 0,1,2,... This form
of stochastic dominance is denoted by X1 > Xo.

(iv) The random variable Xy is almost surely larger than or equal to the
random variable Xo if P(X1 > X5) = 1. This ordering implies that the density
functions f1 and fa may overlap at most on one point and is denoted by X1 >4 5.
X.

Ordering in expectation is the crudest form of stochastic dominance. Stochas-
tic ordering implies ordering in expectation since

E(Xl)/Oootfl(t)dt/Ooo(lFl(t))dt/OooFl(t)dt

(see Exercise 9.11). Tt can easily be shown that likelihood ratio ordering implies
stochastic ordering and that the reverse does not hold.

Example 9.3.2 (Stochastically Ordered Random Variables)

Consider two discrete time random variables X; and X5. Both take values
on 1, 2 and 3:

P(Xs=1)= _, P(X2=2)=_, P(Xy=3)

8’ 8’ T4
Note that X; and X5 are stochastically ordered but not likelihood ratio
ordered as the ratio P(X; = t)/P(X2 = t) is not monotone. I

It is also easy to find an example of a pair of random variables that are
monotone likelihood ratio ordered but not almost surely ordered.
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Example 9.3.3 (Likelihood Ratio Ordered Random Variables)

Consider two exponential distributions with rates A1 and As. These two dis-
tributions are likelihood ratio ordered as

fl(t> )\1e—>\1t B A1 e—(>\1—)\2)t

fg(t) o )\267)‘2t - )\2

which is monotone in ¢. Of course, the two exponentials are not almost surely
ordered as their density functions overlap everywhere. I

The four forms of stochastic dominance described above all imply that the
random variables being compared, in general, have different means. They lead
to the following chain of implications.

almost surely larger = larger in likelihood ratio sense =
stochastically larger = larger in expectation

There are several other important forms of stochastic dominance that are based
on the variability of the random variables under the assumption that the means
are equal. In the subsequent definitions three such forms are presented. One of
these is defined for density functions that are symmetric around the mean, i.e.,

FEX) +1) = f(E(X) —t)

for all 0 < ¢t < E(X). Such a density function then has an upper bound of
2E(X). A Normal (Gaussian) density function with mean p that is truncated
at 0 and at 2u is a symmetric density function.

Definition 9.3.4 (Stochastic Dominance Based on Variance).

(i) The random variable X1 is said to be larger than the random variable X
in the variance sense if the variance of X1 is larger than the variance of Xs.

(i) The continuous random variable X1 is said to be more variable than the
continuous random variable Xo if

/ S W AR () > / S hdm)

for all convex functions h. The discrete random variable X1 is said to be more
variable than the discrete random variable Xso if

i h(t)P(Xy = t) > i h(t)P(Xs = 1)
t=0

t=0

for all convex functions h. This ordering is denoted by X1 >cp Xo.
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(iii) The random variable X is said to be symmetrically more variable than
the random variable Xo if the density functions f1(t) and fa(t) are symmetric
around the same mean 1/ and Fy(t) > Fs(t) for0 <t < 1/X and F1(t) < F»(¢)
for 1I/A<t<2/A\

Again, the first form of stochastic dominance is somewhat crude. However,
any two random variables with equal means can be compared to one another
in this way.

From the fact that the functions h(t) = ¢ and h(t) = —t are convex, it follows
that if X7 is “more variable” than Xo then E(X;) > E(X3) and E(X;) <
E(X53). So E(X1) has to be equal to E(Xz). From the fact that h(t) = 2 is
convex it follows that Var(X;) is larger than Var(Xsz). Variability ordering is
a partial ordering, i.e., not every pair of random variables with equal means
can be ordered in this way. At times, variability ordering is also referred to as
ordering in the convex sense.

It can be shown easily that symmetrically more variable implies more variable
in the convex sense but not vice versa.

Example 9.3.5 (Variability Ordered Random Variables)

Consider a deterministic random variable X; that always assumes the value
1/X and an exponentially distributed random variable Xy with mean 1/A. It
can be verified easily that Xs is more variable, but not symmetrically more
variable than X;. I

Example 9.3.6 (Symmetric Variability Ordered Random Variables)

Consider X; with a uniform distribution over the interval [1, 3], i.e., fi(t) =
0.5 for 1 <t < 3, and X3 with a uniform distribution over the interval [0, 4],
ie., fa(t) = 0.25 for 0 < ¢ < 4. Tt is easily verified that X5 is symmetrically
more variable than Xj. I

The forms of stochastic dominance described in Definition 9.3.4 lead to the
following chain of implications:

symmetrically more variable = more variable = larger in variance

9.4 Impact of Randomness on Fixed Schedules

The stochastic ordering (>;) as well as the variability ordering (>.,) described
in the previous section are restricted versions of another form of dominance
known as increasing convex ordering.
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Definition 9.4.1 (Increasing Convex Ordering). A continuous time
random variable X1 is said to be larger than a continuous time random variable
X5 in the increasing convexr sense if

/ S W dR () > / S hdm)

for all increasing convex functions h. The discrete time random variable Xy is
said to be larger than the discrete time random variable Xo in the increasing
conver sense if

f: h(t)P(X) =t) > i h(t)P(Xy = t)

for all increasing convex functions h. This ordering is denoted by X1 >ice Xo.

Clearly, F(X;) is larger than, but not necessarily equal to, E(X3) and
Var(X1) is not necessarily larger than Var(Xs). However, if E(X;) = E(X2)
then indeed Var(X;) > Var(Xs). From Definition 9.4.1, it immediately follows
that

stochastically larger = larger in the increasing convex sense
more variable = larger in the increasing convex sense

To see the importance of this form of stochastic dominance consider two vectors
of independent random variables, namely Xl(l)7 ey X,(LU and )(1(2)7 ey X,(LZ). All
2n random variables are independent. Let

Zy = g(X1(1)7 .- 7X7(7,1))

and
Zy=g(XP, .. X®),

where the function g is increasing convex in each one of the n arguments.
Lemma 9.4.2. If X\" >, X j=1,... .0, then Z1 >icx Zo.

Proof. The proof is by induction on n. When n = 1 it has to be shown that
E(h(g(x{")) = B(h(g(X{"))

with both g and h increasing convex and Xl(l) >icn Xl(z). This follows from the
definition of variability ordering as the function h(g(t)) is increasing and convex
in ¢ since
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and
th h(g(t)) = h"(g()(g'(1)* + B (g(t)g" (t) > 0.

Assume as induction hypothesis that the lemma holds for vectors of size n — 1.
Now

B(n(o(x{", x5V, X)) | x{V =) = B(n(g(t, X5, XD

Taking expectations yields
B(n(g(x(", x{V,.. X)) = B(hle(x{V, X, X)),
Conditioning on on XQ(Z), . ,XT(L2) and using the result for n = 1 shows that
B(n(gxV, x§,.... x2)) = B(h(g(x{?, X, x{)),

which completes the proof. a
The following two examples illustrate the significance of the previous lemma.

Example 9.4.3 (Stochastic Comparison of Makespans)

Consider two scenarios, each with two machines in parallel and two jobs. The
makespan in the first scenario is

cW) = max(Xl(l), XQ(I))

max

and the makespan in the second scenario is

c? = rnaux(le)7 XQ(Z)).

max

The “max” function is increasing convex in both arguments. From Lemma
9.4.2 it immediately follows that if XJ(D >ex X](-z)7 then XJ(D >ica X](-Q) and
therefore Clidx >ico Cliax. This implies E (Cr(nlgx) > E(CI(IQX) I

Example 9.4.4 (Stochastic Comparison of Total Completion Times)

Consider the problem 1 || > h(C;) with the function h increasing convex.
Consider two scenarios, each one with a single machine and n jobs. The
processing time of job j in the first (second) scenario is X;l) (XJ(Z)). Assume
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that in both cases the jobs are scheduled in the sequence 1,2,...,n. The
objective function in scenario i,7 = 1, 2, is therefore

Zh(cj(n) —AX D)+ h(XD 4 XP) 1D XD X,
j=1

The objective function is increasing convex in each one of the n arguments.
From Lemma 9.4.2 it follows that if X](-l) > Xj(2)7 then XJ(D >icn XJQ) and
therefore B(3-7_, h(C](-l))) > B3, h(C](?))). Note that if the function h is
linear, the values of the two objectives are equal (since E(X;l)) = E(X](Z))).

Lemma 9.4.2 turns out to be very useful for determining bounds on per-
formance measures of given schedules when the processing time distributions
satisfy certain properties. In the next lemma four distributions, Fy, F5, Fj3
and F}y, are considered, all with mean 1.

Lemma 9.4.5. If Fy is deterministic, F5 is ICR, F5 is exponential and Fy
is DCR, then
Fl Scw F2 Scw F3 Scx F4~

Proof. For a proof of this result the reader is referred to Barlow and Proschan
(1975). The result shown by Barlow and Proschan is actually more general than
the result stated here: the distributions F5 and Fj; do not necessarily have to
be ICR and DCR respectively. These distributions may belong to larger classes
of distributions. O

The result in Lemma 9.4.5 can also be extended in another direction. It can
be shown that for any DCR distribution with mean 1, there exists an Extreme
Mixture of Exponentials (EME) distribution with mean 1 that is more variable.

These orderings make it easy to obtain upper and lower bounds on perfor-
mance measures when processing times are either all ICR or all DCR.

Example 9.4.6 (Bounds on the Expected Makespan)

Consider the scenario of two machines in parallel and two jobs (see Exam-
ple 9.4.3). Suppose X; and Xo are independent and identically distributed
(ii.d.) according to F' with mean 1. If F' is deterministic, then the makespan
is 1. If F' is exponential, then the makespan is 3/2. If F' is an EME distribu-
tion as defined in Section 9.1, then the makespan is 2— (p/2) (that is, if p goes
to 0 the makespan goes to 2). Combining the conclusion of Example 9.4.3
with Lemma 9.4.5 yields, when F' is ICR, the inequalities

3

1 S E(Cmax) S 9
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and, when F is DCR, the inequalities

3

5 < E(Chax) < 2.
It is easy to see that the makespan never can be larger than 2. If both jobs
are processed on the same machine one after another the expected makespan
is equal to 2. I

9.5 Classes of Policies

In stochastic scheduling, certain conventions have to be made that are not
needed in deterministic scheduling. During the evolution of a stochastic process
new information becomes available continuously. Job completions and occur-
rences of random release dates and due dates represent additional information
that the decision-maker may wish to take into account when scheduling the re-
maining part of the process. The amount of freedom the decision maker has in
using this additional information is the basis for the various classes of decision
making policies. In this section four classes of policies are defined.

The first class of policies is, in what follows, only used in scenarios where all
the jobs are available for processing at time zero; the machine environments con-
sidered are the single machine, parallel machines and permutation flow shops.

Definition 9.5.1 (Nonpreemptive Static List Policy). Under a non-
preemptive static list policy the decision maker orders the jobs at time zero
according to a priority list. This priority list does not change during the evolu-
tion of the process and every time a machine is freed the next job on the list is
selected for processing.

Under this class of policies the decision maker puts at time zero the n jobs
in a list (permutation) and the list does not change during the evolution of the
process. In the case of machines in parallel, every time a machine is freed, the
job at the top of the list is selected as the next one for processing. In the case
of a permutation flow shop the jobs are also put in a list in front of the first
machine at time zero; every time the first machine is freed the next job on the
list is scheduled for processing. This class of nonpreemptive static list policies
is in what follows also referred to as the class of permutation policies. This class
of policies is in a sense similar to the static priority rules usually considered in
deterministic models.

Example 9.5.2 (Application of a Nonpreemptive Static List Policy)

Consider a single machine and three jobs. All three jobs are available at time
zero. All three jobs have the same processing time distributions, which is 2
with probability .5 and 8 with probability .5. The due date distributions are
the same, too. The due date is 1 with probability .5 and 5 with probability .5.
If a job is completed at the same time as its due date, it is considered to
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be on time. It would be of interest to know the expected number of jobs
completed on time under a permutation policy.

Under a permutation policy the first job is completed in time with prob-
ability .25 (its processing time has to be 2 and its due date has to be 5); the
second job is completed in time with probability .125 (the processing times
of the first and second job have to be 2 and the due date of the second job
has to be 5); the third job never will be completed in time. The expected
number of on-time completions is therefore .375 and the expected number of
tardy jobs is 3 — 0.375 = 2.625. I

The second class of policies is a preemptive version of the first class and is in
what follows only used in scenarios where jobs are released at different points
in time.

Definition 9.5.3 (Preemptive Static List Policy). Under a preemptive
static list policy the decision maker orders the jobs at time zero according to a
priority list. This list includes jobs with nonzero release dates, i.e., jobs that
are to be released later. This priority list does not change during the evolution
of the process and at any point in time the job at the top of the list of available
jobs is the one to be processed on the machine.

Under this class of policies the following may occur. When there is a job
release at some time point and the job released is higher on the static list than
the job currently being processed, then the job being processed is preempted
and the job released is put on the machine instead.

Under the third and fourth class of policies, the decision-maker is allowed to
make his decisions during the evolution of the process. That is, every time he
makes a decision, he may take all the information that has become available
up to that point in time into account. The third class of policies does not allow
preemptions.

Definition 9.5.4 (Nonpreemptive Dynamic Policy). Under a non-
preemptive dynamic policy, every time a machine is freed, the decision maker
is allowed to determine which job goes mext. His decision at such a point in
time may depend on all the information available, e.g., the current time, the
jobs waiting for processing, the jobs currently being processed on other machines
and the amount of processing these jobs already have received on these machines.
However, the decision maker is not allowed to preempt; once a job has bequn its
processing, it has to be completed without interruption.

Example 9.5.5 (Application of a Nonpreemptive Dynamic Policy)

Consider the same problem as in Example 9.5.2. It is of interest to know the
expected number of jobs completed on time under a nonpreemptive dynamic
policy. Under a nonpreemptive dynamic policy the probability the first job is
completed on time is again .25. With probability .5 the first job is completed
at time 2. With probability .25 the due dates of both remaining jobs already
occurred at time 1 and there will be no more on-time completions. With
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probability .75 at least one of the remaining two jobs has a due date at time
5. The probability that the second job put on the machine is completed on
time is 3/16 (the probability that the first job has completion time 2 times
the probability at least one of the two remaining jobs has due date 5 times
the probability that the second job has processing time 2). The expected
number of on-time completions is therefore .4375 and the expected number
of tardy jobs is 2.5625. I

The last class of policies is a preemptive version of the third class.

Definition 9.5.6 (Preemptive Dynamic Policy). Under a preemptive
dynamic policy the decision maker may decide at any point in time which jobs
should be processed on the machines. His decision at any given point in time
may take into account all information available at that point and may involve
preemptions.

Example 9.5.7 (Application of a Preemptive Dynamic Policy)

Consider again the problem of Example 9.5.2. It is of interest to know the
expected number of jobs completed on time under a preemptive dynamic
policy. Under a preemptive dynamic policy, the probability that the first
job is completed on time is again .25. This first job is either taken off the
machine at time 1 (with probability .5) or at time 2 (with probability .5). The
probability the second job put on the machine is completed on time is 3/8,
since the second job enters the machine either at time 1 or at time 2 and
the probability of being completed on time is 0.75 times the probability it
has processing time 2, which equals 3/8 (regardless of when the first job was
taken off the machine). However, unlike under the nonpreemptive dynamic
policy, the second job put on the machine is taken off with probability .5
at time 3 and with probability 0.5 at time 4. So there is actually a chance
that the third job that goes on the machine will be completed on time. The
probability the third job is completed on time is 1/16 (the probability that
the due date of the first job is 1 (=.5) times the probability that the due
dates of both remaining jobs are 5 (=.25) times the probability that the
processing time of the third job is 2 (=.5)). The total expected number of
on-time completions is therefore 11/16 = 0.6875 and the expected number
of tardy jobs is 2.3125. I

It is clear that the optimal preemptive dynamic policy leads to the best
possible value of the objective as in this class of policies the decision maker
has the most information available and the largest amount of freedom. No
general statement can be made with regard to a comparison between the optimal
preemptive static list policy and the optimal nonpreemptive dynamic policy.
The static list policy has the advantage that preemptions are allowed while the
nonpreemptive dynamic policy has the advantage that all current information
can be taken into account during the process. However, if all jobs are present
at time zero and the environment is either a bank of machines in parallel or a
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permutation flow shop, then the optimal nonpreemptive dynamic policy is at
least as good as the optimal nonpreemptive static list policy (see Examples 9.5.2
and 9.5.5).

There are various forms of minimization in stochastic scheduling. Whenever
an objective function has to be minimized, it has to be specified in what sense
the objective has to be minimized. The crudest form of optimization is in the
expectation sense, e.g., one wishes to minimize the expected makespan, that
is F(Cmax), and find a policy under which the expected makespan is smaller
than the expected makespan under any other policy. A stronger form of opti-
mization is optimization in the stochastic sense. If a schedule or policy min-
imizes Cax stochastically, then the makespan under the optimal schedule or
policy is stochastically less than the makespan under any other schedule or
policy. Stochastic minimization, of course, implies minimization in expectation.
In the subsequent chapters the objective is usually minimized in expectation.
Frequently, however, the policies that minimize the objective in expectation
minimize the objective stochastically as well.

Exercises (Computational)

9.1. Determine the completion rate of the discrete Uniform distribution, where
P(X=4i)=0.1,fori=1,...,10.

9.2. Determine the completion rate of the continuous Uniform distribution,
with density function f(¢) = 0.1, for 0 < ¢t < 10, and 0 otherwise.

9.3. Consider two discrete time random variables X; and X5. Both take values
on 1, 2 and 3:

P(X;=1)=.2, P(Xy=2)=.6, P(Xs=3)=2.

(a) Are X7 and Xs likelihood ratio ordered?
(b) Are X; and X5 stochastically ordered?

9.4. Consider two discrete time random variables X; and X5. Both take values
onl, 2 3 and 4:

P(X; =1)=.125, P(X; =2)=.375, P(X; =3)=.375, P(X,=4)=.125;
P(X;=1) =.150, P(Xy=2)=.400, P(Xy=3)=.250, P(Xy=4)=.200.

(a) Are X; and X, symmetrically variability ordered?
(b) Are X; and X, variability ordered?
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9.5. Consider three jobs on two machines. The processing times of the three
jobs are independent and identically distributed (i.i.d.) according to the discrete
distribution P(X; =0.5) = P(X; = 1.5) = 0.5.

(a) Compute the expected makespan.

(b) Compute the total expected completion time (Hint: note that the sum
of the expected completion times is equal to the sum of the expected starting
times plus the sum of the expected processing times.)

(¢) Compare the results of (a) and (b) with the results in case all three
jobs have deterministic processing times equal to 1.

9.6. Do the same as in the previous exercise, but now with two machines and
four jobs.

9.7. Consider a flow shop of two machines with unlimited intermediate storage.
There are two jobs and the four processing times are i.i.d. according to the
discrete distribution

P(X; =0.5) = P(X; = 1.5) = 0.5.
Compute the expected makespan and the total expected completion time.

9.8. Consider a single machine and three jobs. The three jobs have i.i.d. pro-
cessing times. The distribution is exponential with mean 1. The due dates of the
three jobs are also i.i.d. exponential with mean 1. The objective is to minimize
the expected number of tardy jobs, i.e., E(>."_, U;). Consider a nonpreemptive
static list policy.

J=1

(a) Compute the probability of the first job being completed on time.
(b) Compute the probability of the second job being completed on time.
(¢) Compute the probability of the third job being completed on time.

9.9. Do the same as in the previous exercise but now for a nonpreemptive
dynamic policy.

9.10. Do the same as in Exercise 9.8 but now for a preemptive dynamic policy.

Exercises (Theory)

9.11. Show that

(recall that F(t) =1 — F(t)).
9.12. Show that

E(min(X7y, X)) / Fy(t t,
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with X7 and X5 being independent.

9.13. Show that

. 1
E(min(X;, X2)) = Nt

when X is exponentially distributed with rate A and X, exponentially dis-
tributed with rate u.

9.14. Show that
E(maX(Xth)) = E(Xl) + E(XQ) — E(min(Xl, XQ))7

with X7 and X5 arbitrarily distributed.

9.15. Compute the coefficient of variation of the Erlang(k, \) distribution (re-
call that the Erlang(k, A) distribution is a convolution of k i.i.d. exponential
random variables with rate \).

9.16. Consider the following variant of the geometric distribution:
PX=t+a)=(1-9q)q", t=0,1,2,...,

where a = (,/g—¢q)/(1—q). Show that the coefficient of variation C,(X) of this
“shifted” geometric is equal to 1.

9.17. Consider the following partial ordering between random variables X; and
Xs. The random variable X7 is said to be smaller than the random variable Xo
in the completion rate sense if the completion rate of X at time ¢, say A1 (t),
is larger than or equal to the completion rate of Xy, say Az(t), for any t.

(a) Show that this ordering is equivalent to the ratio (1—Fy(t))/(1—Fx(t))
being monotone decreasing in t.

(b) Show that

monotone likelihood ratio ordering = completion rate ordering =
stochastic ordering.

9.18. Consider m machines in parallel and n jobs with i.i.d. processing times
from distribution F' with mean 1. Show that

n < E(Chax) < n.
m

Are there distributions for which these bounds are attained?

9.19. Consider a permutation flow shop with m machines in series and n jobs.
The processing time of job j on machine 7 is X;;, distributed according to F
with mean 1. Show that

n+m—1<E(Cpax) < mn.
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Are there distributions for which these bounds are attained?

9.20. Consider a single machine and n jobs. The processing time of job j is
X, with mean E(X;) and variance Var(X;). Find the schedule that minimizes
E(3" C;) and the schedule that minimizes Var(_ C;). Prove your results.

9.21. Assume X; > Xo. Show through a counterexample that
Zn =2X1+ Xo 25t 2Xo + Xy = Zs.

is not necessarily true.

Comments and References

For a general overview of stochastic scheduling problems, see Dempster, Lenstra
and Rinnooy Kan (1982), Mohring and Radermacher (1985b) and Righter
(1994).

For an easy to read and rather comprehensive treatment of distributions
and classes of distributions based on completion (failure) rates, see Barlow and
Proschan (1975) (Chapter 3).

For a lucid and comprehensive treatment of the several forms of stochastic
dominance, see Ross (1995). A definition of the form of stochastic dominance
based on symmetric variability appears in Pinedo (1982). For a scheduling ap-
plication of monotone likelihood ratio ordering see Brown and Solomon (1973).
For a scheduling application of completion rate ordering (Exercise 9.17), see
Pinedo and Ross (1980). For an overview of the different forms of stochastic
dominance and their importance with respect to scheduling, see Chang and Yao
(1993) and Righter (1994).

For the impact of randomness on fixed schedules, see Pinedo and Weber
(1984), Pinedo and Schechner (1985), Pinedo and Wie (1986), Shanthikumar
and Yao (1991) and Chang and Yao (1993).

Many classes of scheduling policies have been introduced over the years; see,
for example, Glazebrook (1981a, 1981b, 1982), Pinedo (1983) and Mohring,
Radermacher and Weiss (1984, 1985).
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Stochastic models, especially with exponential processing times, may often con-
tain more structure than their deterministic counterparts and may lead to re-
sults which, at first sight, seem surprising. Models that are NP-hard in a deter-
ministic setting often allow a simple priority policy to be optimal in a stochastic
setting.

In this chapter single machine models with arbitrary processing times in a
nonpreemptive setting are discussed first. Then the preemptive cases are consid-
ered, followed by models where the processing times are likelihood ratio ordered.
Finally, models with exponentially distributed processing times are analyzed.

10.1 Arbitrary Distributions without Preemptions

For a number of stochastic problems, finding the optimal policy is equivalent
to solving a deterministic scheduling problem. Usually, when such an equiv-
alence relationship exists, the deterministic counterpart can be obtained by
replacing all random variables with their means. The optimal schedule for the
deterministic problem then minimizes the objective of the stochastic version in
expectation.

One such case is when the objective in the deterministic counterpart is linear
in p¢;y and w;), where p¢;) and w;y denote the processing time and weight of
the job in the j-th position in the sequence.

M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 267
DOI 10.1007/978-1-4614-2361-4 10, © Springer Science+Business Media, LLC 2012
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This observation implies that it is easy to find the optimal permutation
schedule for the stochastic counterpart of 1 || > w;C;, when the processing
time of job j is Xj;, from an arbitrary distribution F}, and the objective is
E(>  w;Cj). This problem leads to the stochastic version of the WSPT rule,
which sequences the jobs in decreasing order of the ratio w;/E(X;) or A\jw;.
In what follows this rule is referred to either as the Weighted Shortest Expected
Processing Time first (WSEPT) rule or as the ”"Aw" rule.

Theorem 10.1.1. The WSEPT rule minimizes the expected sum of the
weighted completion times in the class of nonpreemptive static list policies as
well as in the class of nonpreemptive dynamic policies.

Proof. The proof for nonpreemptive static list policies is similar to the proof
for the deterministic counterpart of this problem. The proof is based on an
adjacent pairwise interchange argument identical to the one used in the proof
of Theorem 3.1.1. The only difference is that the p;’s in that proof have to be
replaced by E(X;)’s.

The proof for nonpreemptive dynamic policies needs an additional argument.
It is easy to show that it is true for n = 2 (again an adjacent pairwise interchange
argument). Now consider three jobs. It is clear that the last two jobs have to
be sequenced according to the Aw rule. These last two jobs will be sequenced in
this order independent of what occurs during the processing of the first job and
of the completion time of the first job. There are then three sequences that may
occur: each of the three jobs starting first and the remaining two jobs sequenced
according to the Aw rule. A simple interchange argument between the first job
and the second shows that all three jobs have to sequenced according to the Aw
rule. It can be shown by induction that all n jobs have to be sequenced according
to the Aw rule in the class of nonpreemptive dynamic policies: suppose it is true
for n — 1 jobs. If there are n jobs, then it follows from the induction hypothesis
that the last n — 1 jobs have to be sequenced according to the Aw rule. Suppose
the first job is not the job with the highest Ajw;. Interchanging this job with
the second job in the sequence, i.e., the job with the highest A;jw;, results in
a decrease in the expected value of the objective function. This completes the
proof of the theorem. a

It can be shown that the nonpreemptive WSEPT rule is also optimal in the
class of preemptive dynamic policies when all n processing time distributions
are ICR. This follows from the fact that at any time when a preemption is
contemplated, the Aw ratio of the job currently on the machine is actually higher
than when it was put on the machine (the expected remaining processing time
of an ICR job decreases as processing goes on). If the ratio of the job was the
highest among the remaining jobs when it was put on the machine, it remains
the highest while it is being processed.

The same cannot be said about jobs with DCR, distributions. The expected
remaining processing time then increases while a job is being processed. So the
weight divided by the expected remaining processing time of a job, while it is
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being processed, decreases with time. Preemptions may therefore be advanta-
geous when processing times are DCR.

Example 10.1.2 (Optimal Policy with Random Variables that are
DCR)

Consider n jobs with the processing time X; distributed as follows. The
processing time X; is 0 with probability p; and it is distributed according to
an exponential with rate A\; with probability 1 —p;. Clearly, this distribution
is DCR as it is a mixture of two exponentials with rates oo and A;. The
objective to be minimized is the expected sum of the weighted completion
times. The optimal preemptive dynamic policy is clear. All n jobs have to
be tried out for a split second at time zero, in order to determine which jobs
have zero processing times. If a job does not have zero processing time, it
is taken immediately off the machine. After having determined in this way
which jobs have nonzero processing times, these remaining jobs are sequenced
in decreasing order of A;jw;. I

Consider the following generalization of the stochastic counterpart of 1 ||
> w;C; described above. The machine is subject to breakdowns. The “up”
times, i.e., the times that the machine is in operation, are exponentially dis-
tributed with rate v. The “down” times are independent and identically dis-
tributed (i.i.d.) according to distribution G with mean 1/p. It can be shown
that even in this case the Aw rule is optimal. Actually, it can be shown that
this stochastic problem with breakdowns is equivalent to a similar deterministic
problem without breakdowns. The processing time of job j in the equivalent
deterministic problem is determined as follows. Let X; denote the original ran-
dom processing time of job j when there are no breakdowns and let Y; denote
the time job j occupies the machine, including the time that the machine is
not in operation. The following relationship can be determined easily (see Ex-
ercise 10.11).

E(Y;) = B(X;)(1+ Z>.

This relationship holds because of the exponential uptimes of the machines
and the fact that all the breakdowns have the same mean. So, even with the
breakdown process described above, the problem is still equivalent to the de-
terministic problem 1 ||  w,;C; without breakdowns.

The equivalences between the single machine stochastic models and their
deterministic counterparts go even further. Consider the stochastic counterpart
of 1| chains | >~ w;C;. If in the stochastic counterpart the jobs are subject to
precedence constraints that take the form of chains, then Algorithm 3.1.4 can
be used for minimizing the expected sum of the weighted completion times (in
the definition of the p-factor the p; is again replaced by the E(X})).

Consider now the stochastic version of 1 || 3" w;(1 — e~"%) with arbitrarily
distributed processing times. This problem leads to the stochastic version of
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WDSEPT
Equal weights . Deterministic
Undiscounted
DSEPT WSEPT WDSPT
AN
Undiscounted Equal weights Deterministic Undiscounted
SEPT WSPT
Determinis& )/Equal weights
SPT

Fig. 10.1 Hierarchy of scheduling rules

the WDSPT rule which sequences the jobs in decreasing order of the ratio

ij((BiTXj)
1—E(e %)’

This rule is referred to as the Weighted Discounted Shortest Expected Processing
Time first (WDSEPT) rule. This rule is, in a sense, a generalization of a number
of rules considered before (see Figure 10.1).

Theorem 10.1.3. The WDSEPT rule minimizes the expected weighted
sum of the discounted completion times in the class of nonpreemptive static list
policies as well as in the class of nonpreemptive dynamic policies.

Proof. The optimality of this rule can be shown again through a straightfor-
ward pairwise interchange argument similar to the one used in the proof of
Theorem 3.1.6. The w;e~"(**Pi) is replaced by the w;E(e~"(*+%4)). Optimal-
ity in the class of nonpreemptive dynamic policies follows from an induction
argument similar to the one presented in Theorem 10.1.1. g

Example 10.1.4 (Application of the WDSEPT Rule)

Consider two jobs with equal weights, say 1. The processing time distribution
of the first job is a continuous time uniform distribution over the interval
[0,2], i.e., fi(t) = .5 for 0 < ¢ < 2. The processing time distribution of the
second job is a discrete time uniform distribution with 0, 1 and 2 as possible
outcomes, i.e.,
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Clearly, E(X1) = E(X2) = 1. The discount factor r is 1/10. In order to
determine the priority indices of the two jobs E(e™"**) and E(e~"*2) have
to be computed:

o0 2 1
E(e ™) = / e M fi(t)dt = / Qefo‘udt = .9063
0 0

and

= 11 1
—T'XQ TtP — —0.1 —0.2 = 9078.

= e ==y tge e

t=0
The priority index of job 1 is therefore 9.678 and the priority index of job 2
is 9.852. This implies that job 2 has to be processed first and job 1 second. If
the discount factor would have been zero any one of the two sequences would
have been optimal. Observe that Var(X;) = 1/3 and Var(X2) = 2/3. So in
this case it is optimal to process the job with the larger variance first. I

In the theorem above the optimality of the WDSEPT rule is shown for the
class of nonpreemptive static list policies as well as for the class of nonpre-
emptive dynamic policies. Precedence constraints can be handled in the same
way as they are handled in the deterministic counterpart (see Exercise 3.22).
The model considered in Theorem 10.1.3, without precedence constraints, will
be considered again in the next section in an environment that allows preemp-
tions.

The remaining part of this section focuses on due date related problems.
Consider the stochastic counterpart of 1 || Lyax with processing times that
have arbitrary distributions and deterministic due dates. The objective is to
minimize the expected maximum lateness.

Theorem 10.1.5. The EDD rule minimizes expected maximum lateness
for arbitrarily distributed processing times and deterministic due dates in the
class of nonpreemptive static list policies, the class of nonpreemptive dynamic
policies and the class of preemptive dynamic policies.

Proof. Tt is clear that the EDD rule minimizes the maximum lateness for any
realization of processing times (after conditioning on the processing times, the
problem is basically a deterministic problem and Algorithm 3.2.1 applies). If
the EDD rule minimizes the maximum lateness for any realization of processing
times then it minimizes the maximum lateness also in expectation (it actually
minimizes the maximum lateness almost surely). O

Example 10.1.6 (Application of the EDD Rule)

Consider two jobs with deterministic due dates. The processing time distri-
butions of the jobs are discrete:
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and

The due date of the first job is D; = 1 and the due date of the second job is
D2 = 4. Now

E(max(Ly, Ly)) = E(maX(Lth) | X, =1,Xs = 2) X P(X; =1,Xo = 2)
+E(max(L1,L2) | X1 =1,Xo=4) x P(X; = 1, X5 =
+ B(max(Ly, L) | X1 =2, X2 = 2) x P(X; = 2, X5 =
+E
+ E( max(Lq,La) | X1 =4,X2=2

+F

) )
) )
max(Ly, Ly) | X1 = 2, Xy = 4) x P(X; =2, X5 = 4)
) x P )
max(Ly, La) | X1 =4, Xo = 4) —4)

A/—\/—\/—\

1
(0+1+1+2+3+4)6
11
6"
It can easily be verified that scheduling job 2 first and job 1 second results
in a larger E(max(Lq, La)).
Note, however, that in any given sequence E(Ly.x) = E(max(L1, L))

does not necessarily have to be equal to max(FE(L1), E(L2)). Under sequence
1,2,

1 1 1 4
( 1) X 3 +1x 3 +oX 3 37
while
1/1 1 1/1 1 1/1 1 3
E<L2)_3(2 <0ty X1)+3(2 <0ty X2)+3(2X2+2X4)_2'
So max(E(Ly), E(Lz)) = 3/2, which is smaller than F(max(Li, La)). I
It can be shown that the EDD rule not only minimizes

E(Lyax) = E(max(Lq,...,Ly)),

but also max(E(L1),..., E(Ly)).

It is even possible to develop an algorithm for a stochastic counterpart of the
more general 1 | prec | hyax problem considered in Chapter 3. In this problem
the objective is to minimize the maximum of the n expected costs incurred by
the n jobs, i.e., the objective is to minimize

max (E(h1(C’1)), e E(hn(Cn)))v
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where h;(C;) is the cost incurred by job j being completed at C;. The cost
function h; is nondecreasing in the completion time C;. The algorithm is a
modified version of Algorithm 3.2.1. The version here is also a backward pro-
cedure. Whenever one has to select a schedulable job for processing, it is clear
that the distribution of its completion time is the convolution of the processing
times of the jobs that have not yet been scheduled. Let fj;. denote the density
function of the convolution of the processing times of the set of unscheduled
jobs J€. Job j* is then selected to be processed last among the set of jobs J€ if

jeJ©

/Oo hj* (t)f‘]c (t)dt = HIlIl /Oo hj (t)f‘]c (t)dt
0 0

The L.H.S. denotes the expected value of the penalty for job j* if it is the last job
to be scheduled among the jobs in J€. This rule replaces the first part of Step 2
in Algorithm 3.2.1. The proof of optimality is similar to the proof of optimality
for the deterministic case. However, implementation of the algorithm may be
significantly more cumbersome because of the evaluation of the integrals.

Example 10.1.7 (Minimizing Maximum Expected Cost)

Consider three jobs with random processing times X;, Xo and X3 from
distributions Fi, F» and F3. Particulars of the processing times and cost
functions are given in the table below.

jobs 1 2 3
hj(Cj) 1+2Cy 38 4(Cs
E(X]) 6 18 12

Note that all three cost functions are linear. This makes the evaluations of
all the necessary integrals very easy, since the integrals are a linear function
of the means of the processing times. If job 1 is the last one to be completed,
the expected penalty with regard to job 1 is 1+ 2(6 + 18 + 12) = 73; the
expected penalty with regard to job 2 is 38 and with regard to job 3 is
4(6 + 18+ 12) = 144. The procedure selects job 2 for the last position. If job
1 would go second the expected penalty would be 1+ 2(6 + 12) = 37 and if
job 3 would go second its expected penalty would be 4(6 + 12) = 72. So job
1 is selected to go second and job 3 goes first. If job 3 goes first its expected
penalty is 48. The maximum of the three expected penalties under sequence
3,1,2 is max(48,37,38) = 48. I

Note that the analysis in Example 10.1.7 is particularly easy since all three
cost functions are linear. The only information needed with regard to the pro-
cessing time of a job is its mean. If any one of the cost functions is nonlinear,
the expected penalty of the corresponding job is more difficult to compute; its
entire distribution has to be taken into account. The integrals may have to be
evaluated through approximation methods.
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10.2 Arbitrary Distributions with Preemptions: the
Gittins Index

Consider the problem of scheduling n jobs with random processing times
X1,...,X, from discrete time distributions. The scheduler is allowed to pre-
empt the machine at discrete times 0, 1, 2, ... If job j is completed at the
integer completion time C; a reward w]ﬂcj is received, where ( is a discount
factor between 0 and 1. The value of § is typically close to 1. It is of interest
to determine the policy that maximizes the total expected reward.

Before proceeding with the analysis it may be useful to relate this problem to
another described earlier. It can be argued that this problem is a discrete-time
version of the continuous-time problem with the objective

E( iwj(l - 6_7'07')).

The argument goes as follows. Maximizing > w; (% is equivalent to minimizing
> w;(1 — B%). Consider the limiting case where the size of the time unit is
decreased and the number of time units is increased accordingly. If the time
unit is changed from 1 to 1/k with (k > 1), the discount factor 8 has to be
adjusted as well. The appropriate discount factor, which corresponds to the new
time unit 1/k, is then /3. If 3 is relatively close to one, then

k ~ 71*[3
V=1 e

So N
*BCj%(l_ k )

and e

lim (1 — 1= 5) T = e~ (1=P)C;

k—o0 k
This implies that when S is relatively close to one, it is similar to the 1 —r used
in earlier models. The current model is then a discrete time stochastic version
of the deterministic problem 1 | prmp | > w;(1 — exp(—rC};)) discussed in
Chapter 3. The stochastic version can be used to model the problem described
in Example 1.1.4 (the problem described in Example 1.1.4 is actually slightly
more general as it assumes that jobs have different release dates).

In order to characterize the optimal policy for this discrete time scheduling
problem with preemptions, it is actually easier to consider a more general reward
process. Let x;(t) denote the state of job j at time ¢. This state is basically
determined by the amount of processing job j has received prior to time ¢.
If the decision is made to process job j during the interval [t,¢ + 1] a random
reward W;(z;(t)) is received. This random reward is a function of the state z;(¢)
of job j. Clearly, this reward process is more general than the one described at
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the beginning of this section under which a (fixed) reward w; is received only
if job j is completed during the interval [t,t + 1]. In what follows the optimal
policy is determined for the more general reward process.

The decision to be made at any point in time has two elements. First, a
decision has to be made with regard to the job selection. Second, if a particular
job is selected, a decision has to be made with regard to the amount of time the
job should remain on the machine. The first point in time at which another job
is considered for processing is referred to as the stopping time and is denoted
by 7.

It is shown in what follows that the solution of this problem can be charac-
terized by functions G, j = 1,...,n, with the property that processing job j*
at time ¢ is optimal if and only if

G (2j-) = max Gj(z;),
where z; is the amount of processing job j already has received by time ¢, i.e.,
x;(t) = x;. The function G; is called the Gittins index and is defined as

. B (720 67 Wy (a5(5)) | 25(0) = ;)
ST (S 5,0 =)

with the stopping time 7 being determined by the policy w. However, the value
T is not necessarily the time at which the processing of job j stops. Job j may
actually be completed before the stopping time.

This is one of the more popular forms in which the Gittins index is presented
in the literature. The Gittins index may be described in words as the largest
value that is obtainable by dividing the total discounted expected reward over
a given time period (determined by the stopping time) by the discounted time
itself.

The next theorem focuses on the optimal policy under the more general
reward process described above.

Theorem 10.2.1. The policy that maximizes the total discounted expected
reward in the class of preemptive dynamic policies prescribes, at each point in
time, the processing of the job with the largest Gittins index.

Proof. Assume that the scheduler has to pay a fixed charge to the machine if he
decides to process job j. Call this charge the prevailing charge. Suppose job j
is the only one in the system and the scheduler has to decide whether or not
to process it. The scheduler has to decide to process the job for a number of
time units, observe the state as it evolves and then stop processing the moment
the prevailing charge does not justify any further processing. If the prevailing
charge is very small; it is advantageous to continue processing whereas if the
prevailing charge is too high, any further processing leads to losses.
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As a function of the state of job j, say x;, the so-called fair charge is defined
as 7y;(x;), the level of prevailing charge for which the optimal action will neither
be profitable nor cause losses. That is, the fair charge is the level of the prevailing
charge at which the costs to the scheduler are exactly in balance with the
expected outside rewards to be obtained by processing the jobs according to
the optimal policy. So

%) = max (7 mngw(TZ_laS“ (Witas() =) | 2;(0) = ;) > 0),
s=0

where the policy m determines the stopping time 7. Thus the fair charge is
determined by the optimal action which prescribes processing the job for exactly
7 time units or until completion, whichever comes first. Processing the job for
less time causes losses and processing the job for more than 7 time units causes
losses also. Suppose the prevailing charge is reduced to the fair charge whenever
the scheduler would have decided to stop processing the job due to the prevailing
charge being too high. Then the scheduler would keep the job on the machine
until completion as the process now becomes a fair game. In this case, the
sequence of prevailing charges for the job is nonincreasing in the number of
time units the job already has undergone processing.

Suppose now that there are n different jobs and at each point in time the
scheduler has to decide which one to process during the next time period. As-
sume that initially the prevailing charge for each job is set equal to its fair
charge and the prevailing charges are reduced periodically afterwards, as de-
scribed above, every time a stopping time is reached. Thus the scheduler never
pays more than the fair charge and can make sure that his expected total dis-
counted profit is nonnegative. However, it is also clear that his total profit
cannot be positive, because it would have to be positive for at least one job and
this cannot happen as the prevailing charges consistently are set equal to the
fair charges. The scheduler only can break even if, whenever he selects a job, he
processes the job according to the optimal policy. That is, he has to continue
processing this job until the optimal stopping time, that determines the level of
the fair charge. If he does not act accordingly, he acts suboptimally and incurs
an expected discounted loss. So the scheduler acts optimally if, whenever he
starts processing a job, he continues to do so as long as the job’s fair charge
remains greater than its prevailing charge.

The sequence of prevailing charges for each job is a nonincreasing function
of the number of time units the job has undergone processing. By definition
it is a sequence that is independent of the policy adopted. If for each job the
sequence of prevailing charges is nonincreasing and if the scheduler adopts the
policy of always processing the job with the largest prevailing charge, then he
incurs charges in a nonincreasing sequence. This intertwining of sequences of
prevailing charges into a single nonincreasing sequence is unique (in terms of
charges, not necessarily in terms of jobs). Thus the policy of processing the
job with the largest prevailing charge maximizes the expected total discounted
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charge paid by the scheduler. This maximum quantity is an upper bound for
the expected total discounted reward obtained by the scheduler. This upper
bound is achieved by the proposed policy, since the policy forces the scheduler
to process a job, without interruption, for the time that its fair charge exceeds
its prevailing charge (this leads to a fair game in which the scheduler’s total
expected discounted profit is zero). This completes the proof of the theorem. 0O

From the expression for the fair charge 7;(z;) the expression for the Gittins
index immediately follows. For the special case in which a fixed reward wj; is
received only upon completion of job j, the Gittins index becomes

71 ns+1,,, . o ) )
G, (z;) = max ZézTO_? | wiP(X; =z +1+s|X; > x))
720 Yo BHP(X Z a1+ s | X > @)
e 2o BTN P(X = 2+ 1+ 5)
>0 STl BsHIP(X; > a4 1+ 8)
The Gittins index is determined by the maximum of the ratio of the R.H.S. over
all possible stopping times. As the expectations of the sums in the numerator
and denominator must take into account that the scheduler does not keep the
job on the machine for 7 time units in case the job is completed early, each
element in one of the sums has to be multiplied with the appropriate probability.
As the computation of Gittins indices at first sight may seem somewhat
involved, an example is in order. The following example considers the reward
process where a fixed reward w; is obtained upon completion of job j.

Example 10.2.2 (Application of the Gittins Index)

Consider three jobs with w; = 60, ws = 30 and w3 = 40. Let p;; denote the
probability that the processing time of job j takes k time units, i.e.,

pjk = P(X; = k)

The processing times of the three jobs take only values on the integers 1, 2
and 3.

1 1 1
p11=67 p12=27 p13=3;
2 1 1
b21 = 3’ P22 = 6’ P23 = 6;
1 1 1
p31:2a P32:47 P33:4§

Assume the discount rate 8 to be 0.5. If job 1 is put on the machine at
time 0, the discounted expected reward at time 1 is wip118 which is 5. The
discounted expected reward obtained at time 2 is w;p12/3% which is 7.5. The
discounted expected reward obtained at time 3 is w;pi3/3° which is 2.5. The
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Gittins index for job 1 at time 0 can now be computed easily.

5 5+7.5 5+75+25
G1(1(0)) = G1(0) = max ( ) — 920.

0.5" 0.5+ 0.208" 0.5+ 0.208 + 0.042

Thus, if job 1 is selected as the one to go on the machine at time 0, it will
be processed until it is completed. In the same way the Gittins indices for
jobs 2 and 3 at time zero can be computed.

10 11.25 11.875
) —20

G(0) = max (0.5’ 0.5+ 0.083 0.5 + 0.083 + 0.021

The computation of the Gittins index of job 2 indicates that job 2, if selected
to go on the machine at time 0, may be preempted before being completed;
processing is only guaranteed for one time unit.

10 12.5 13.75

G4(0) =
3(0) = max (0.5’ 0.5+ 0.125” 0.5 + 0.125 + 0.031

) =20.96
If job 3 would be selected for processing at time 0, it would be processed up
to completion.

After comparing the three Gittins indices for the three jobs at time zero a
decision can be made with regard to the job to be selected for processing. The
maximum of the three Gittins indices is 20.96. So job 3 is put on the machine
at time 0 and is kept on the machine until completion. At the completion of
job 3 either job 1 or job 2 may be selected. The values of their Gittins indices
are the same. If job 1 is selected for processing it remains on the machine
until it is completed. If job 2 is selected, it is guaranteed processing for only
one time unit; if it is not completed after one time unit it is preempted and
job 1 is selected for processing. I

What would happen if the processing times have ICR, distributions? It can
be shown that in this case the scheduler never will preempt. The Gittins in-
dex of the job being processed increases continuously, while the indices of the
jobs waiting for processing remain the same. Consider the limiting case where
the length of the time unit goes to 0 as the number of timesteps increases
accordingly. The problem becomes a continuous time problem. When the pro-
cessing times are ICR, the result in Theorem 10.2.1 is equivalent to the result
in Theorem 10.1.3. So, in one sense Theorem 10.1.3 is more general as it cov-
ers the nonpreemptive setting with arbitrary processing time distributions (not
just ICR distributions), while Theorem 10.2.1 does not give any indication of
the form of the optimal policy in a nonpreemptive setting when the processing
times are not ICR. In another sense Theorem 10.2.1 is more general, since The-
orem 10.1.3 does not give any indication of the form of the optimal policy in a
preemptive setting when the processing times are not ICR.

The result in Theorem 10.2.1 can be generalized to include jobs arriving
according to a Poisson process. In a discrete time framework this implies that
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the interarrival times are geometrically distributed with a fixed parameter. The
job selected at any point in time is the job with the largest Gittins index among
the jobs present. The proof of this result lies beyond the scope of this book.
The result can also be generalized to include breakdowns with up times that
are i.i.d. geometrically distributed and down times that are i.i.d. arbitrarily dis-
tributed. For the proof of this result the reader is also referred to the literature.

10.3 Likelihood Ratio Ordered Distributions

Section 10.1 discussed examples of nonpreemptive stochastic models that are
basically equivalent to their deterministic counterparts. In a number of cases
the distributions of the random variables did not matter at all; only their expec-
tations played a role. In this subsection, an example is given of a nonpreemptive
stochastic model that is, to a lesser extent, equivalent to its deterministic coun-
terpart. Its relationship with its deterministic counterpart is not as strong as
in the earlier cases, since some conditions on the distribution functions of the
processing times are required.

Consider n jobs. The processing time of job j is equal to the random variable
X; with distribution F}, provided the job is started immediately at time zero.
However, over time the machine “deteriorates”, i.e., the later a job starts its
processing, the longer its processing time. If job j starts with its processing
at time ¢, its processing time is X;a(t), where a(t) is an increasing concave
function. Thus for any starting time ¢ the processing time is proportional to the
processing time of the job if it had started its processing at time 0. Moreover,
concavity of a(t) implies that the deterioration process in the early stages of
the process is more severe than in the later stages of the process. The original
processing times are assumed to be likelihood ratio ordered in such a way that
X1 <pr -+ <i X,,. The objective is to minimize the expected makespan. The
following lemma is needed in the subsequent analysis.

Lemma 10.3.1. If g(x1,x2) is a real valued function satisfying

g(z1,2) > g(x2,21)
for all 1 < xo, then
9(X1, X2) >t 9(X2, X1)
whenever

X1 < Xo.

Proof. Let U = max(X;, X2) and V = min(X1, X2). Condition on U = u and
V = v with w > v. The conditional distribution of g(X;, X2) is concentrated
on the two points g(u,v) and g(v,u). The probability assigned to the smaller
value g(u,v) is then

P(X; =max(X1,X2) | U =u,V =)
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C hwh)

fr(w) f2(v) + f1(v) fa(u)
In the same way g(X2, X1) is also concentrated on two points g(u, v) and g(v, u).
The probability assigned to the smaller value g(u,v) in this case is

P(X; =max(X1,X5) | U=u,V =0)

f2(u) f1(v)
fo(u) fr(v) + f2(v) f1(u)

As u > v and Xo >, X1,
fi(u) f2(v) < fa(u) f1(v).
Therefore, conditional on U = u and V = v
9(X2, X1) <st 9(X1, X2).
Unconditioning completes the proof of the Lemma. a

At first sight this lemma may seem to provide a very fundamental and useful
result. Any pairwise interchange in a deterministic setting can be translated
into a pairwise interchange in a stochastic setting with the random variables
likelihood ratio ordered. However, the usefulness of this lemma appears to be
limited to single machine problems and proportionate flow shops.

The following two lemmas contain some elementary properties of the func-
tion a(t).

Lemma 10.3.2. If0 < x < o, then for allt >0
z1a(t) + azga(t + xla(t)) > xoalt) + :ﬂla(t + xga(t)).

Proof. The proof is easy and therefore omitted. O

From Lemmas 10.3.1 and 10.3.2 it immediately follows that if there are only
two jobs, scheduling the job with the larger expected processing time first min-
imizes the expected makespan.

Lemma 10.3.3.  The function hy, (t) = t + z1a(t) is increasing in t, for
all x1 > 0.

Proof. The proof is easy and therefore omitted. O

Theorem 10.3.4.  The Longest Expected Processing Time first (LEPT)
rule minimizes the expected makespan in the class of nonpreemptive static list
policies as well as in the class of nonpreemptive dynamic policies.
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Proof. Consider first the class of nonpreemptive static list policies. The proof
is by induction. It has already been shown to hold for two jobs. Assume the
theorem holds for n — 1 jobs. Consider any nonpreemptive static list policy and
let job k be the job that is scheduled last. From Lemma 10.3.3 it follows that
among all schedules that process job k last, the one resulting in the minimum
makespan is the one that stochastically minimizes the completion time of the
first n—1 jobs. Hence, by the induction hypothesis, of all schedules that schedule
job k last, the one with the stochastically smallest makespan is the one which
schedules the first n — 1 jobs according to LEPT. If k£ is not the smallest job,
then the best schedule is the one that selects the smallest job immediately
before this last job k. Let ¢’ denote the time that this smallest job starts its
processing and suppose that there are only two jobs remaining to be processed.
The problem at this point is a problem with two jobs and an a function that is
given by ay (t) = a(t’ +t). Because this function is still concave it follows, from
the result for two jobs, that interchanging these last two jobs reduces the total
makespan stochastically. But among all schedules which schedule the smallest
job last, the one stated in the theorem, by the induction hypothesis, minimizes
the makespan stochastically. This completes the proof for nonpreemptive static
list policies.

It remains to be shown that the LEPT rule also stochastically minimizes the
makespan in the class of nonpreemptive dynamic policies. Suppose the decision
is allowed to depend on what has previously occurred, at most [ times during
the process (of course, such times occur only when the machine is freed). When
I =1 it follows from the optimality proof for static list policies that it is optimal
not to deviate from the LEPT schedule. If this remains true when [ — 1 such
opportunities are allowed, it follows from the same argument that it remains
true when [ such opportunities are allowed (because of the induction hypothesis
such an opportunity would be utilized only once). As the result is true for all [,
the proof for nonpreemptive dynamic policies is complete. a

Example 10.3.5 (Linear Deterioration Function)

Consider two jobs with exponential processing times. The rates are A\; and As.
The deterioration function a(t) = 1+ ¢, t > 0, is linear. If the jobs are
scheduled according to sequence 1,2, then the expected makespan can be
computed as follows. If job 1 is completed at time ¢, the expected time job 2
will occupy the machine is a(t) /2. The probability job 1 is completed during
the interval [t, ¢+ dt] is \ye"dt. So

o0 1 11 1
E(Chax :/ t+ a(t ANe Mdt= T 4+ 7 + .
(Cinax) 0 ( UAQ) ! A A2 Ao

From this expression it is clear that the expected makespan in this case does
not depend on the sequence. I
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Example 10.3.6 (Increasing Concave Deterioration Function and
LEPT)

Consider two jobs with discrete processing time distributions.

1 1 5
1 1 1

It is clear that X7 >, Xo. F(X;) = 2.5 while E(X3) = 2.25. The deterio-
ration function a(t) = 14t for 0 < t < 2, and a(t) = 3 for t > 2. Clearly,
a(t) is increasing concave. Consider the LEPT sequence, i.e., sequence 1, 2.
The expected makespan can be computed by conditioning on the processing
time of the first job.

E(Cuax (LEPT)) = ;(1 +2E(Xs)) + i(z +3E(Xa)) + 2(3 +3E(X2))
o7
- 327
while
E(Cuax(SEPT)) = i(1 +2E(X1)) + i(2 +3E(X1)) + ;(3 +3E(X,))

292
327

Clearly, LEPT is better than SEPT. I

Intuitively, it does make sense that if the deterioration function is increasing
concave the longest job should go first. It can also be shown that if the dete-
rioration function is increasing convex the Shortest Expected Processing Time
first (SEPT) rule is optimal and if the deterioration function is linear then any
sequence is optimal.

However, if the function a(t) is decreasing, i.e., a form of learning takes place
that makes it possible to process the jobs faster, then it does not appear that
similar results can be obtained.

10.4 Exponential Distributions

This section focuses on models with exponentially distributed processing times.
Consider the stochastic version of 1 | d; = d | > w;U; with job j having an
exponentially distributed processing time with rate A\; and a deterministic due
date d. Recall that the deterministic counterpart is equivalent to the knapsack
problem. The objective is the expected weighted number of tardy jobs.
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Theorem 10.4.1. The WSEPT rule minimizes the expected weighted num-
ber of tardy jobs in the classes of nonpreemptive static list policies, nonpreemp-
tive dynamic policies and preemptive dynamic policies.

Proof. First the optimality of the WSEPT rule in the class of nonpreemptive
static list policies is shown. Assume the machine is free at some time ¢ and
two jobs, with weights w; and ws and processing times X; and Xs, remain to
be processed. Consider first the sequence 1,2. The probability that both jobs
are late is equal to the probability that X; is larger than d — ¢, which is equal
to exp(—A(d — t)). The penalty for being late is then equal to w; + wa. The
probability that only the second job is late corresponds to the event where the
processing time of the first job is 1 < d—t and the sum of the processing times
x1 + 22 > d — t. Evaluation of the probability of this event, by conditioning on
X, (that is X7 = z), yields

d—t
P(X;<d—t, X1+ Xo>d—1t) = / e Neld=tmT) )\ o~ Nz gy,
0

If E(>"wU(1,2)) denotes the expected value of the penalty due to jobs 1 and 2,
with job 1 processed first, then

E(ZwU(l, 2)) = (w1 + wg)e_)‘l(d_t) + wg/ e Mld—t=z)\ oMz gy
0

The value of the objective function under sequence 2, 1 can be obtained by inter-
changing the subscripts in the expression above. Straightforward computation

yields
E(ZwU(l,Z)) —E(ZwU(2,1)) =

e—)\l(d—t) _ €—>\2(d—t)
Ao — A\q

It immediately follows that the difference in the expected values is positive
if and only if Aswe > Ajwi. Since this result holds for all values of d and ¢,
any permutation schedule that does not sequence the jobs in decreasing order
of Ajw; can be improved by swapping two adjacent jobs, where the first has a
lower Aw value than the second. This completes the proof of optimality for the
class of nonpreemptive static list policies.

Induction can be used to show optimality in the class of nonpreemptive
dynamic policies. It is immediate that this is true for 2 jobs (it follows from the
same pairwise interchange argument for optimality in the class of nonpreemptive
static list policies). Assume that it is true for n — 1 jobs. In the case of n jobs
this implies that the scheduler after the completion of the first job will, because
of the induction hypothesis, revert to the WSEPT rule among the remaining
n — 1 jobs. It remains to be shown that the scheduler has to select the job with
the highest Ajw; as the first one to be processed. Suppose the decision-maker

(Aqwe — Awy)
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selects a job that does not have the highest Ajw;. Then, the job with the highest
value of A\jw; is processed second. Changing the sequence of the first two jobs
decreases the expected value of the objective function according to the pairwise
interchange argument used for the nonpreemptive static list policies.

To show that WSEPT is optimal in the class of preemptive dynamic policies,
suppose a preemption is contemplated at some point in time. The remaining
processing time of the job is then exponentially distributed with the same rate
as it had at the start of its processing (because of the memoryless property of the
exponential). Since the decision to put this job on the machine did not depend
on the value of ¢ at that moment or on the value of d, the same decision remains
optimal at the moment a preemption is contemplated. A nonpreemptive policy
is therefore optimal in the class of preemptive dynamic policies. O

This result is in a marked contrast to the result in Chapter 3 that states that
its deterministic counterpart, i.e., the knapsack problem, is NP-hard.

Consider now the discrete time version of Theorem 10.4.1. That is, the pro-
cessing time of job j is geometrically distributed with parameter g; and job j
has weight w;. All jobs have the same due date d. If a job is completed exactly
at its due date it is considered on time. The objective is again E(> w,;Uj;).

Theorem 10.4.2. The WSEPT rule minimizes the expected weighted num-
ber of tardy jobs in the classes of nonpreemptive static list policies, nonpreemp-
tive dynamic policies and preemptive dynamic policies.

Proof. Consider two jobs, say jobs 1 and 2, and sequence 1, 2. The probability

that both jobs are late is qf“ and the penalty is then w; 4+ wsy. The probability

that the first job is on time and the second job is late is

d

> (l—aq)gigst
t=0

The penalty is then ws. So the total penalty under sequence 1,2 is

d+1
(w1 +w2)g " + wa(1 — q1)gy™ (1 - (Z;) )/(1 - Z;)

The total expected penalty under sequence 2, 1 can be obtained by interchanging
the subscripts 1 and 2. Sequence 1,2 is better than sequence 2,1 if

d+1 d+2 d+2 d+2
wi1qi T g2 — woq{t? — woq1gdT? + wag 2 ge

< wight? — waqigy T+ wigf e — wigrgd
After some manipulations it turns out that sequence 1,2 is better than 2,1 if

wi(1—q1)/q1 > w2l — q2)/qa,
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which is equivalent to
w1 wa

E(X1) © B(X)

That WSEPT is also optimal in the class of nonpreemptive dynamic policies
and in the class of preemptive dynamic policies can be shown through the same
arguments as those used in the proof of Theorem 10.4.1. O

The WSEPT rule does not necessarily yield an optimal schedule when pro-
cessing time distributions are not all exponential (or all geometric).

Example 10.4.3 (Optimal Policy when Random Variables are ICR)

Consider the case where each one of the processing times is distributed ac-
cording to an Erlang(k, A) distribution. The rate of an exponential phase of
job j is A;. This implies E(X;) = k/X;. The WSEPT rule in general will not
yield optimal schedules. Job j having a deterministic processing time p; is a
special case (the number of phases of the Erlang for each one of the n jobs
approaches oo, while the mean of each phase approaches zero). It is clear
how in this manner a counterexample can be constructed for ICR processing
times. I

Example 10.4.4 (Optimal Policy when Random Variables are DCR)

Consider the case where each one of the processing times is distributed ac-
cording to a mixture of exponentials. Assume that the processing time of
job j is 0 with probability p; and exponentially distributed with rate A; with
probability 1 — p;. Clearly,

BOG) = (=),

j
The optimal preemptive policy can be determined easily. Try each job out
at time zero for an infinitesimal period of time. The jobs with zero process-
ing times are then immediately completed. Immediately after time zero it
is known which jobs have nonzero processing times. The remaining process-
ing times of these jobs are then exponentially distributed with probability
one. The optimal preemptive policy from that point in time on is then the
nonpreemptive policy described in Theorem 10.4.1. I

Theorems 10.4.1 and 10.4.2 can be generalized to include breakdown and
repair. Suppose the machine goes through “uptimes”, when it is functioning
and “downtimes” when it is being repaired. This breakdown and repair may
form an arbitrary stochastic process. Theorem 10.4.1 also holds under these
more general conditions since no part of the proof depends on the remaining
time till the due date.

Theorem 10.4.1 can also be generalized to include different release dates with
arbitrary distributions. Assume a finite number of releases after time 0, say n*.
It is clear from the results presented above that at the time of the last release
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the WSEPT policy is optimal. This may actually imply that the last release
causes a preemption (if, at that point in time, the job released is the job with
the highest A;w; ratio in the system). Consider now the time epoch of the
second last release. After this release a preemptive version of the WSEPT rule
is optimal. To see this, disregard for a moment the very last release. All the jobs
in the system at the time of the second to last release (not including the last
release) have to be sequenced according to WSEPT; the last release may in a
sense be considered a random “downtime”. From the previous results it follows
that all the jobs in the system at the time of the second last release should
be scheduled according to preemptive WSEPT, independent of the time period
during which the last release is processed. Proceeding inductively towards time
zero it can be shown that a preemptive version of WSEPT is optimal with
arbitrarily distributed releases in the classes of preemptive static list policies
and preemptive dynamic policies.

The WSEPT rule proves optimal for other objectives as well. Consider the
stochastic counterpart of 1 | d; = d | > w;T; with job j again exponentially
distributed with rate A;. All n jobs are released at time 0. The objective is to
minimize the sum of the expected weighted tardinesses.

Theorem 10.4.5. The WSEPT rule minimizes the expected sum of the
weighted tardinesses in the classes of nonpreemptive static list policies, nonpre-
emptive dynamic policies and preemptive dynamic policies.

Proof. The objective w;T; can be approximated by the sum of an infinite se-
quence of w;U; unit penalty functions, i.e.,

The first unit penalty Ujo corresponds to a due date d, the second unit penalty
Uj1 corresponds to a due date d + 1/K, the third corresponds to a due date
d+2/K and so on (see Figure 10.2). From Theorem 10.4.1 it follows that Aw
rule minimizes each one of these unit penalty functions. If the rule minimizes
each one of these unit penalty functions, it also minimizes their sum. O

This theorem can be generalized along the lines of Theorem 10.4.1 to in-
clude arbitrary breakdown and repair processes and arbitrary release processes,
provided all jobs have due date d (including those released after d).

Actually, a generalization in a slightly different direction is also possible.
Consider the stochastic counterpart of the problem 1 || > w;h(C;). In this
model the jobs have no specific due dates, but are all subject to the same cost
function h. The objective is to minimize E(} w;h(C;)). Clearly, > w;h(C;) is
a simple generalization of ) w;7T; when all jobs have the same due date d. The
function h can again be approximated by a sum of an infinite sequence of unit
penalties, the only difference being that the due dates of the unit penalties are
not necessarily equidistant as in the proof of Theorem 10.4.5.
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Fig. 10.2 Superposition of unit penalty functions

Consider now a stochastic counterpart of the problem 1 || >~ w;h;(C;), with
each job having a different cost function. Again, all jobs are released at time
0. The objective is to minimize the total expected cost. The following ordering
among cost functions is of interest: a cost function h; is said to be steeper than
a cost function hy if

dhy(t) _ dhe()
dt  — dt
for every t, provided the derivatives exist. This ordering is denoted by h; >, hy.
If the functions are not differentiable for every ¢, the steepness ordering requires

hj(t+6) — hj(t) > hi(t +6) — hi(t),
for every t and §. Note that a cost function being steeper than another does
not necessarily imply that it is higher (see Figure 10.3).

Theorem 10.4.6. If \jw; > Mywp <= h; > hi, then the WSEPT
rule minimizes the total expected cost in the classes of nonpreemptive static list
policies, nonpreemptive dynamic policies and preemptive dynamic policies.
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(0, i) Iy
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Fig. 10.3 One cost function being steeper than another

Proof. The proof follows from the fact that any increasing cost function can
be approximated by an appropriate summation of a (possibly infinite) number
of unit penalties at different due dates. If two cost functions, that may be at
different levels, go up in the same way over an interval [t1,ts], then a series
of identical unit penalties go into effect within that interval for both jobs. It
follows from Theorem 10.4.1 that the jobs have to be sequenced in decreasing
order of Aw in order to minimize the total expected penalties due to these unit
penalties. If one cost function is steeper than another in a particular interval,
then the steeper cost function has one or more unit penalties going into effect
within this interval, which the other cost function has not. To minimize the
total expected cost due to these unit penalties, the jobs have to be sequenced
again in decreasing order of Aw. O

Example 10.4.7 (Application of WSEPT when Due Dates are
Agreeable)

Consider n jobs with exponentially distributed processing times with rates
A1, .-+, Ap. The jobs have deterministic due dates dy < dy < --- < d,,. First,
consider E(D " w;T};) as the objective to be minimized. If ljwy; > Aows >
<o+ > Apwn, then sequence 1,2, ...,n minimizes the objective, since T7 >
T2 Zs ZsTn

Second, consider E(>" w;U;) with the same due dates dy < dg < --- < d,,
as the objective to be minimized. It can be verified easily that the string of
inequalities Uy >4 Us >, -+ >4 U, does not hold. So sequence 1,2,...,n
does not necessarily minimize the objective (see Exercise 10.10). I

The result of Theorem 10.4.6 can be generalized easily to include an arbitrary
machine breakdown process. It also can be extended, in the case of preemptive
static list policies or in the case of preemptive dynamic policies, to include jobs
with different release dates, as long as the cost functions of the new arrivals
satisfy the stated “agreeability” conditions.

The results in this subsection indicate that scheduling problems with expo-
nentially distributed processing times allow for more elegant structural results
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than their deterministic counterparts. The deterministic counterparts of most
of the models discussed in this section are NP-hard. It is intuitively acceptable
that a deterministic problem may be NP-hard while its counterpart with ex-
ponentially distributed processing times allows for a very simple policy to be
optimal. The reason is the following: all data being deterministic (i.e., perfect
data) makes it very hard for the scheduler to optimize. In order to take advan-
tage of all the information available the scheduler has to spend an inordinately
amount of time doing the optimization. On the other hand when the process-
ing times are stochastic, the data are fuzzier. The scheduler, with less data at
hand, will spend less time performing the optimization. The fuzzier the data,
the more likely a simple priority rule minimizes the objective in expectation.
Expectation is akin to optimizing for the average case.

10.5 Discussion

This chapter has provided only a small sample of the results that have appeared
in the literature with regard to single machine stochastic scheduling with all
jobs released at time zero. Clearly, there are many more results in the literature.

For example, some research has focused on single machine stochastic schedul-
ing with batch processing, i.e., stochastic counterparts of problems described in
Chapter 4. In these stochastic models the batch size is assumed to be fixed (b)
and either the expected makespan or the total expected completion time has
to be minimized. It has been shown that if the n jobs are ordered according to
symmetric variability ordering (i.e., the n jobs have the same mean but differ-
ent variances), then the Smallest Variance First rule minimizes the expected
makespan as well as the total expected completion time under fairly general
conditions.

Exercises (Computational)

10.1. Consider a single machine and three jobs with i.i.d. processing times with
distribution F' and mean 1.

(a) Show that when F is deterministic E(} C;) = 6 under a nonpreemp-
tive schedule and E(} C;) =9 under the processor sharing schedule.

(b) Show that when F is exponential E() C;) = 6 under a nonpreemptive
schedule and E(}" C;) = 6 under the processor sharing schedule. (Recall
that under a processor sharing schedule all jobs available share the processor
equally, i.e., if there are n jobs available, then each job receives 1/n of the
processing capability of the machine (see Section 5.2)).

10.2. Consider the same scenario as in the previous exercise. Assume F' is an
EME distribution (as defined in Section 9.2) with the parameter p very small.
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(a) Show that E(} C;) = 6 under the nonpreemptive schedule.
(b) Show that E(D_ C;) = 3 under the processor sharing schedule.

10.3. Consider a single machine and three jobs. The distribution of job j,
Jj =1,2,3, is discrete uniform over the set {10 —4,10—j+1,...,10+ j}. Find
the schedule(s) that minimize E(} C;) and compute the value of the objective
function under the optimal schedule.

10.4. Consider the same setting as in the previous exercise. Find now the
schedule that minimizes E(}" h;(C;)), where the function h(Cj) is defined as

follows.
{0 it C; <20
h(Cj) = {Cj ~20if C; > 20

Is the Largest Variance first (LV) rule or the Smallest Variance first (SV) rule
optimal?

10.5. Consider the same setting as in the previous exercise. Find now the
schedule that minimizes E(}_ h;(C;)), where the function h(C}) is defined as

follows. oo
L _[Citc; <20
h(Cj) = {20 if C; > 20

Is the Largest Variance first (LV) rule or the Smallest Variance first (SV) rule
optimal?

10.6. Consider two jobs with discrete processing time distributions:

and 1

P(X2=3)=P(X2=5) = o
The two jobs have deterministic due dates. The due date of the first job is
D, = 2 and the due date of the second job is Dy = 4. Compute E(max(Ly, Lz))
and max(F(L1), E(L2)) under EDD.

10.7. Consider the framework of Section 10.2. There are 3 jobs, all having a
discrete uniform distribution. The processing time of job j is uniformly dis-
tributed over the set {6 —5,5—j+1,...,54+j—1,5+j}. The discount factor 8
is equal to 0.5. The weight of job 1 is 30, the weight of job 2 is 10 and the
weight of job 3 is 30. Find the optimal preemptive policy. Determine whether
it is necessary to preempt any job at any point in time.

10.8. Redo the instance in Exercise 10.7 with the discount factor 8 = 1. De-
termine all optimal policies. Give an explanation for the results obtained and
compare the results with the results obtained in Exercise 10.7.
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10.9. Consider Example 10.3.5 with the linear deterioration function a(t) =
1 + t. Instead of the two jobs with exponentially distributed processing times,
consider two jobs with geometrically distributed processing times with param-
eters q; and ¢2. Compute the expected makespan under the two sequences.

10.10. Construct a counterexample for the stochastic problem with expo-
nential processing times and deterministic due dates showing that if A\jw; >
Mwy < dj < dj the Aw rule does not necessarily minimize E(} w;Uj).

Exercises (Theory)

10.11. Consider the model in Theorem 10.1.1 with breakdowns. The up-times
are exponentially distributed with rate v and the down-times are i.i.d. (arbi-
trarily distributed) with mean 1/u. Show that the expected time job j spends
on the machine is equal to

By = (1+ ) B(X),

where E(X;) is the expected processing time of job j. Give an explanation why
this problem is therefore equivalent to the problem without breakdowns ( Hint:
only the time-axis changes because of the breakdowns).

10.12. Consider the same model as in Exercise 10.11 but assume now that the
processing time of job j is exponentially distributed with rate A;. Assume that
the repair time is exponentially distributed with rate pu.

(a) Show that the number of times the machine breaks down during the
processing of job j is geometrically distributed with rate

v
1= )\j =+ v

(b) Show that the total amount of time spent on the repair of the machine
during the processing of job j is exponentially distributed with rate A;p/v,
provided there is at least one breakdown.

(c) Show that the total time job j remains on the machine is a mixture
of an exponential with rate A\; and a convolution of two exponentials with
rates A; and A;u/v. Find the mixing probabilities.

10.13. Consider the model in Exercise 10.11. Assume that the jobs are sub-
ject to precedence constraints that take the form of chains. Show that Algo-
rithm 3.1.4 minimizes the total expected weighted completion time.

10.14. Consider the discrete time stochastic model described in Section 10.2.
The continuous time version is a stochastic counterpart of the problem 1 |
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prmp | > w;(1 — exp(—rC;)). Show that the Gittins index for this problem is

wy [7 fi(s)eods
Gj(z;) =max ., "’ B .
7>0 fmj(l — Fj(s))e""sds

10.15. Consider the stochastic counterpart of 1 | d; = d | Y w;U; with the
processing time of job j arbitrarily distributed according to F;. All jobs have a
common random due date that is exponentially distributed with rate r. Show
that this problem is equivalent to the stochastic counterpart of the problem
1] Y w;(1 —exp(—rCj)) (that is, a problem without a due date but with a
discounted cost function) with all jobs having arbitrary distributions. (Hint:
If, in the stochastic counterpart of 1 | d; = d | >, w;Uj, job j is completed
at time C; the probability that it is late is equal to the probability that the
random due date occurs before C;. The probability that this occurs is 1— e~ "%,
which is equal to E(Uj)).

10.16. Show that if in the model of Section 10.3 the deterioration function is
linear, i.e., a(t) = ¢1 + cot with both ¢; and c¢2 constant, the distribution of the
makespan is sequence independent.

10.17. Show, through a counterexample, that LEPT does not necessarily min-
imize the makespan in the model of Section 10.3 when the distributions are
merely ordered in expectation and not in the likelihood ratio sense. Find a
counterexample with distributions that are stochastically ordered but not or-
dered in the likelihood ratio sense.

10.18. Consider the two processing time distributions of the jobs in Example
10.3.6. Assume the deterioration function a(t) = 1 for 0 < ¢t <1 and a(t) =t
for t > 1 (i.e., the deterioration function is increasing convex). Show that SEPT
minimizes the makespan.

10.19. Consider the discrete time counterparts of Theorems 10.4.3 and 10.4.4
with geometric processing time distributions. State the results and prove the
optimality of the WSEPT rule.

10.20. Generalize the result presented in Theorem 10.4.6 to the case where the
machine is subject to an arbitrary breakdown process.

10.21. Generalize Theorem 10.4.6 to include jobs which are released at differ-
ent points in time.

10.22. Consider the following discrete time stochastic counterpart of the deter-
ministic model 1 | d; = d,prmp | > w;U;. The n jobs have a common random
due date D. When a job is completed before the due date, a discounted re-
ward is obtained. When the due date occurs before its completion, no reward
is obtained and it does not pay to continue processing the job. Formulate the
optimal policy in the class of preemptive dynamic policies.
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10.23. Show that if all weights are equal, i.e., w; = 1 for all j, and X; <y
X5 <4 - <4 Xp, then the WDSEPT rule is equivalent to the SEPT rule for
any r, 0 <r < 1.

Comments and References

A number of researchers have considered nonpreemptive single machine schedul-
ing problems with arbitrary processing time distributions, see Rothkopf (1966a,
1966b), Crabill and Maxwell (1969), Hodgson (1977) and Forst (1984). For re-
sults with regard to the WSEPT rule, or equivalently the cu rule, see Cox and
Smith (1961), Harrison (1975a, 1975b), Buyukkoc, Varaiya and Walrand (1985),
and Nain, Tsoucas and Walrand (1989). For models that also include stochastic
breakdowns, see Glazebrook (1984, 1987), Pinedo and Rammouz (1988), Birge,
Frenk, Mittenthal and Rinnooy Kan (1990) and Frenk (1991).

The Gittins index is due to Gittins and explained in his famous paper Gittins
(1979). Many researchers have subsequently studied the use of Gittins indices
in single machine stochastic scheduling problems and other applications; see,
for example, Whittle (1980, 1981), Glazebrook (1981a, 1981b, 1982), Chen and
Katehakis (1986) and Katehakis and Veinott (1987). The proof of optimality of
Gittins indices presented here is due to Weber (1992).

The section on processing time distributions that are likelihood ratio or-
dered and subject to deterioration is entirely based on the paper by Brown
and Solomon (1973). For more results on single machine scheduling subject to
deterioration, see Browne and Yechiali (1990).

For an extensive treatment of single machine scheduling with exponential
processing time distributions, see Derman, Lieberman and Ross (1978), Pinedo
(1983) and Pinedo and Rammouz (1988). For due date related objectives with
processing time distributions that are not exponential, see Sarin, Steiner and
Erel (1990).

For single machine stochastic scheduling with batch processing, see Koole
and Righter (2001) and Pinedo (2007).
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In many stochastic environments job releases occur at random points in time.
This chapter focuses on single machine stochastic models with the jobs having
besides random processing times also random release dates. The objective is the
total expected weighted completion time. Preemptive as well as nonpreemptive
models are considered.

An environment with random release dates is somewhat similar to the models
considered in queueing theory. In a priority queue a server (or a machine) has
to process customers (or jobs) from different classes with each class having it
own priority level (or weight).

There are various similarities between stochastic scheduling with random
release dates and priority queues. One similarity is that different jobs may
have different processing times from different distributions. Another similarity
is that different jobs may have different weights. However, there are also various
differences. One important difference is that in scheduling the goal is typically
to minimize an objective that involves n jobs, whereas in queueing one usually
assumes an infinite stream of customers and the focus is on asymptotic results.
In scheduling the goal is to find a policy that minimizes the total expected
waiting cost of the n jobs, or, equivalently, the average expected waiting cost
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of the n jobs, whereas in queueing the goal is to quantify the expected waiting
time of a typical customer or customer class in steady state and then determine
the policy that minimizes the average expected waiting cost per customer or
customer class. It pays to draw parallels between stochastic scheduling and
priority queues since certain approaches and methodologies are applicable to
both areas of research.

The models considered in this chapter are the stochastic counterparts of
1|rj| > w;Cjand 1| r;,prmp | > w,;C;. The objective considered is actually
not E(>" w;C;), but rather

E(Z w;(Cj — Rj)).

However, the term E() " w;R;) is, of course, a constant that does not depend
on the policy. An equivalent objective is

E(Z?:1 w; (Cj — Rj))
n .
If there is an infinite number of customers, then the objective

>im wi(Cj — Ry)
( )

n

lim F
n—oo
is of interest. This last objective is the one typically considered in queueing
theory.
The WSEPT rule is optimal in several settings. This chapter focuses on
the various conditions under which WSEPT minimizes the objectives under
consideration.

11.1 Arbitrary Release Dates and Arbitrary Processing
Times without Preemptions

The model considered in this section is in one sense more general and in another
sense more restricted than the model described in Section 9.1. The generaliza-
tion lies in the fact that now the jobs have different release dates. The restriction
lies in the fact that in Section 9.1 the n jobs have processing times that come
from n different distributions, whereas in this section there are only two job
classes with two different distributions. The processing times of the two job
classes are arbitrarily distributed according to Fy and F5 with means 1/A; and
1/A2. The weights of the two job classes are wy and ws, respectively. The release
dates of the n jobs have an arbitrary joint distribution. Assume that unforced
idleness is not allowed; that is, the machine is not allowed to remain idle if there
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are jobs waiting for processing. Preemptions are not allowed. This model is a
stochastic counterpart of 1 | r; | > w;C;, or, equivalently, 1 | r; | > w;(Cj—rj).

Theorem 11.1.1.  Under the optimal nonpreemptive dynamic policy the
decision-maker follows, whenever the machine is freed, the WSEPT rule.

Proof. The proof is by contradiction and based on a simple adjacent pairwise
interchange. Suppose that at a time when the machine is freed jobs from both
priority classes are waiting for processing. Suppose the decision-maker starts a
job of the lower priority class (even though a job of the higher priority class is
available for processing); he schedules a job of the higher priority class immedi-
ately after the completion of the job of the lower priority class. Now perform an
adjacent pairwise interchange between these two jobs. Note that a pairwise in-
terchange between these two adjacent jobs does not affect the completion times
of any one of the jobs processed after this pair of jobs. However, the pairwise
interchange does reduce the sum of the weighted expected completion times of
the two jobs involved in the interchange. So the original ordering could not have
been optimal. It follows that the decision-maker always must use the WSEPT
rule. g

The result of Theorem 11.1.1 applies to settings with a finite number of
jobs as well as to settings with an infinite arrival stream. The result cannot
be generalized to more than two priority classes; with three priority classes a
counterexample can be found easily.

Example 11.1.2 (Counterexample to Optimality of WSEPT with
three Priority Classes)

The following counterexample has three jobs and is entirely deterministic.

jobs 12 3
7”‘j 00 1
w; 15100

At time zero the job with the highest w;/p; ratio is job 2. However, under
the optimal schedule job 1 has to be processed at time 0. After job 1 has
been completed at time 1, job 3 starts its processing. Under this schedule
the total weighted completion time is

1+1x100+6 x5 =131.

If job 2 would have started its processing at time zero, then the total weighted
completion time would be

4x5+4x100+6x 1 =426 I
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The proof of Theorem 11.1.1, for two priority classes, does not go through
when unforced idleness is allowed. If unforced idleness is allowed, then it may
be optimal to keep the machine idle while a job is waiting, in anticipation of an
imminent release of a high priority job.

Example 11.1.3 (Counterexample to Optimality of WSEPT when
Unforced Idleness is Allowed)

The following counterexample with two jobs is also deterministic.

jobs 1 2
pj 4 1
Tj 0 1
w; 1100

At time O there is a job available for processing. However, it is optimal to
keep the machine idle till time 1, process job 2 for one time unit and then
process job 1. Under this optimal schedule the total weighted completion
time is

1x 10046 x 1 =106.
If job 1 would have been put on the machine at time 0, then the total weighted
completion time is

4 x 145 x 100 = 504. I

11.2 Priority Queues, Work Conservation and Poisson
Releases

Assume that at the release of job j, at time R;, the processing time Xj; is
drawn from distribution F};. This implies that at any time ¢ the total amount
of processing required by the jobs waiting for processing (or, in queueing ter-
minology, the customers waiting in queue), has already been determined. Let
2" (t) denote the remaining processing time of the job that is being processed
on the machine at time ¢. Let V(¢) denote the sum of the processing times of
the jobs waiting for processing at time ¢ plus z"(¢). In the queueing literature
this V'(¢) is typically referred to as the amount of work that is present in the
system at time t.

At each release date the V(t) jumps (increases), and the size of the jump
is the processing time of the job just released. Between jumps, V(t) decreases
continuously with slope —1, as long as the machine is busy processing a job. A
realization of V'(¢) is depicted in Figure 11.1. As long as unforced idleness of
the machine is not allowed, the function V'(¢) does not depend on the priorities
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140)

x Job releases

Fig. 11.1 Amount of work in system as function of time

of the different job classes nor on the sequence in which the jobs are processed
on the machine.

Closed form expressions for the performance measures of interest, e.g., the
expected time a typical job spends in the system under a given priority rule,
can only be obtained under certain assumptions regarding the release times of
the jobs. The release processes considered are similar to those typically used in
queueing theory.

Suppose there is a single class of jobs and the jobs have processing times
that are i.i.d. and distributed according to F. There is an infinite stream of
jobs coming in. The jobs are released according to a Poisson process with rate
v, implying that the probability of the number of jobs released by time ¢, N (),
equals /£ is
eVt (Vt)z

0! '
The release times of the jobs are, of course, strongly dependent upon one an-
other. The release of any given job occurs a random time after the release of the
previous job. Successive interrelease times are independent and exponentially
distributed with the same mean.

Poisson release processes have a very useful and important property, that
in queueing theory often is referred to as Poisson Arrivals See Ti